std:: atomic_fetch_or, std:: atomic_fetch_or_explicit
Defined in header
<atomic>
|
||
template
<
class
T
>
T atomic_fetch_or
(
std::
atomic
<
T
>
*
obj,
|
(1) | (since C++11) |
template
<
class
T
>
T atomic_fetch_or
(
volatile
std::
atomic
<
T
>
*
obj,
|
(2) | (since C++11) |
template
<
class
T
>
T atomic_fetch_or_explicit
(
std::
atomic
<
T
>
*
obj,
|
(3) | (since C++11) |
template
<
class
T
>
T atomic_fetch_or_explicit
(
volatile
std::
atomic
<
T
>
*
obj,
|
(4) | (since C++11) |
Atomically replaces the value pointed by obj with the result of bitwise OR between the old value of obj and arg . Returns the value obj held previously.
The operation is performed as if the following is executed:
If
std::atomic<T>
has no
fetch_or
member (this member is only provided for
integral types
except
bool
), the program is ill-formed.
Parameters
obj | - | pointer to the atomic object to modify |
arg | - | the value to bitwise OR to the value stored in the atomic object |
order | - | the memory synchronization ordering |
Return value
The value immediately preceding the effects of this function in the modification order of * obj .
Example
#include <atomic> #include <chrono> #include <functional> #include <iostream> #include <thread> // Binary semaphore for demonstrative purposes only. // This is a simple yet meaningful example: atomic operations // are unnecessary without threads. class Semaphore { std::atomic_char m_signaled; public: Semaphore(bool initial = false) { m_signaled = initial; } // Block until semaphore is signaled void take() { while (!std::atomic_fetch_and(&m_signaled, false)) { std::this_thread::sleep_for(std::chrono::milliseconds(10)); } } void put() { std::atomic_fetch_or(&m_signaled, true); } }; class ThreadedCounter { static const int N = 100; static const int REPORT_INTERVAL = 10; int m_count; bool m_done; Semaphore m_count_sem; Semaphore m_print_sem; void count_up() { for (m_count = 1; m_count <= N; ++m_count) if (m_count % REPORT_INTERVAL == 0) { if (m_count == N) m_done = true; m_print_sem.put(); // signal printing to occur m_count_sem.take(); // wait until printing is complete proceeding } std::cout << "count_up() done\n"; m_done = true; m_print_sem.put(); } void print_count() { do { m_print_sem.take(); std::cout << m_count << '\n'; m_count_sem.put(); } while (!m_done); std::cout << "print_count() done\n"; } public: ThreadedCounter() : m_done(false) {} void run() { auto print_thread = std::thread(&ThreadedCounter::print_count, this); auto count_thread = std::thread(&ThreadedCounter::count_up, this); print_thread.join(); count_thread.join(); } }; int main() { ThreadedCounter m_counter; m_counter.run(); }
Output:
10 20 30 40 50 60 70 80 90 100 print_count() done count_up() done
Defect reports
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
P0558R1 | C++11 |
exact type match was required because
T
was deduced from multiple arguments
|
T
is only deduced
from obj |
See also
atomically performs bitwise OR between the argument and the value of the atomic object and obtains the value held previously
(public member function of
std::atomic<T>
)
|
|
(C++11)
(C++11)
|
replaces the atomic object with the result of bitwise AND with a non-atomic argument and obtains the previous value of the atomic
(function template) |
(C++11)
(C++11)
|
replaces the atomic object with the result of bitwise XOR with a non-atomic argument and obtains the previous value of the atomic
(function template) |
C documentation
for
atomic_fetch_or
,
atomic_fetch_or_explicit
|