std::experimental:: reduce, std::experimental:: hmin, std::experimental:: hmax

From cppreference.com
Defined in header <experimental/simd>
template < class T, class Abi, class BinaryOperation = std:: plus <> >
T reduce ( const simd < T, Abi > & v, BinaryOperation binary_op = { } ) ;
(1) (parallelism TS v2)
template < class M, class V, class BinaryOperation >

typename V :: value_type
reduce ( const const_where_expression < M, V > & x,

typename V :: value_type identity_element, BinaryOperation binary_op = { } ) ;
(2) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

reduce ( const const_where_expression < M, V > & x, std:: plus <> binary_op ) noexcept ;
(3) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

reduce ( const const_where_expression < M, V > & x, std:: multiplies <> binary_op ) noexcept ;
(4) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

reduce ( const const_where_expression < M, V > & x, std:: bit_and <> binary_op ) noexcept ;
(5) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

reduce ( const const_where_expression < M, V > & x, std:: bit_or <> binary_op ) noexcept ;
(6) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

reduce ( const const_where_expression < M, V > & x, std:: bit_xor <> binary_op ) noexcept ;
(7) (parallelism TS v2)
template < class T, class Abi >
T hmin ( const simd < T, Abi > & v ) noexcept ;
(8) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

hmin ( const const_where_expression < M, V > & x ) noexcept ;
(9) (parallelism TS v2)
template < class T, class Abi >
T hmax ( const simd < T, Abi > & v ) noexcept ;
(10) (parallelism TS v2)
template < class M, class V >

typename V :: value_type

hmax ( const const_where_expression < M, V > & x ) noexcept ;
(11) (parallelism TS v2)
1) Reduces all values in v over binary_op .
2) Reduces the values in x where the associated mask element is true over binary_op .
3) Returns the sum of all values in x where the associated mask element is true .
4) Returns the product of all values in x where the associated mask element is true .
5) Returns the aggregation using bitwise-and of all values in x where the associated mask element is true .
6) Returns the aggregation using bitwise-or of all values in x where the associated mask element is true .
7) Returns the aggregation using bitwise-xor of all values in x where the associated mask element is true .
8) Reduces all values in v over std:: min .
9) Reduces all values in x where the associated mask element is true over std:: min .
10) Reduces all values in v over std:: max .
11) Reduces all values in x where the associated mask element is true over std:: max .

The behavior is non-deterministic if binary_op is not associative or not commutative.

Parameters

v - the simd vector to apply the reduction to
x - the return value of a where expression to apply the reduction to
identity_element - a value that acts as identity element for binary_op ; binary_op ( identity_element, a ) == a must hold for all finite a of type V :: value_type
binary_op - binary FunctionObject that will be applied in unspecified order to arguments of type V :: value_type or simd < V :: value_type , A > , with unspecified ABI tag A . binary_op ( v, v ) must be convertible to V

Return value

The result of operation of the type:

1,8,10) T
2-7,9,11) V :: value_type

Example

#include <array>
#include <cassert>
#include <cstddef>
#include <experimental/simd>
#include <functional>
#include <iostream>
#include <numeric>
namespace stdx = std::experimental;
 
int main()
{
    using V = stdx::native_simd<double>;
 
    alignas(stdx::memory_alignment_v<V>) std::array<V::value_type, 1024> data;
    std::iota(data.begin(), data.end(), 0);
 
    V::value_type acc{};
    for (std::size_t i = 0; i < data.size(); i += V::size())
        acc += stdx::reduce(V(&data[i], stdx::vector_aligned), std::plus{});
    std::cout << "sum of data = " << acc << '\n';
 
    using W = stdx::fixed_size_simd<int, 4>;
    alignas(stdx::memory_alignment_v<W>) std::array<int, 4> arr{2, 5, 4, 1};
    auto w = W(&arr[0], stdx::vector_aligned);
    assert(stdx::hmin(w) == 1 and stdx::hmax(w) == 5);
}

Output:

sum of data = 523776

See also

(C++17)
similar to std::accumulate , except out of order
(function template)