std:: reduce

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Defined in header <numeric>
template < class InputIt >

typename std:: iterator_traits < InputIt > :: value_type

reduce ( InputIt first, InputIt last ) ;
(1) (since C++17)
(constexpr since C++20)
template < class ExecutionPolicy, class ForwardIt >

typename std:: iterator_traits < ForwardIt > :: value_type
reduce ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last ) ;
(2) (since C++17)
template < class InputIt, class T >
T reduce ( InputIt first, InputIt last, T init ) ;
(3) (since C++17)
(constexpr since C++20)
template < class ExecutionPolicy, class ForwardIt, class T >

T reduce ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, T init ) ;
(4) (since C++17)
template < class InputIt, class T, class BinaryOp >
T reduce ( InputIt first, InputIt last, T init, BinaryOp op ) ;
(5) (since C++17)
(constexpr since C++20)
template < class ExecutionPolicy,

class ForwardIt, class T, class BinaryOp >
T reduce ( ExecutionPolicy && policy,

ForwardIt first, ForwardIt last, T init, BinaryOp op ) ;
(6) (since C++17)
1) Equivalent to reduce ( first, last, typename std:: iterator_traits < InputIt > :: value_type { } ) .
3) Equivalent to reduce ( first, last, init, std:: plus <> ( ) ) .
5) Reduces the range [ first , last ) , possibly permuted and aggregated in unspecified manner, along with the initial value init over op .
2,4,6) Same as (1,3,5) , but executed according to policy .
These overloads participate in overload resolution only if

std:: is_execution_policy_v < std:: decay_t < ExecutionPolicy >> is true .

(until C++20)

std:: is_execution_policy_v < std:: remove_cvref_t < ExecutionPolicy >> is true .

(since C++20)

Given binary_op as the actual binary operation:

  • The result is non-deterministic if the binary_op is not associative or not commutative (such as floating-point addition).
  • If any of the following values is not convertible to T , the program is ill-formed:
  • binary_op ( init, * first )
  • binary_op ( * first, init )
  • binary_op ( init, init )
  • binary_op ( * first, * first )
  • If any of the following conditions is satisfied, the behavior is undefined:
  • T is not MoveConstructible .
  • binary_op modifies any element of [ first , last ) .
  • binary_op invalidates any iterator or subrange of [ first , last ] .

Parameters

first, last - the range of elements to apply the algorithm to
init - the initial value of the generalized sum
policy - the execution policy to use. See execution policy for details.
op - binary FunctionObject that will be applied in unspecified order to the result of dereferencing the input iterators, the results of other op and init .
Type requirements
-
InputIt must meet the requirements of LegacyInputIterator .
-
ForwardIt must meet the requirements of LegacyForwardIterator .

Return value

1-4) The generalized sum of init and the elements of [ first , last ) over std:: plus <> ( ) .
5,6) The generalized sum of init and the elements of [ first , last ) over op .

The generalized sum of a group of elements over an binary operation binary_op is defined as follows:

  • If the group only has one element, the sum is the value of the element.
  • Otherwise, performs the following operations in order:
  1. Takes any two elements elem1 and elem2 from the group.
  2. Calculates binary_op ( elem1, elem2 ) and puts the result back to the group.
  3. Repeats steps 1 and 2 until there is only one element in the group.

Complexity

Given N as std:: distance ( first, last ) :

1-4) O(N) applications of std:: plus <> ( ) .
5,6) O(N) applications of op .

Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard policies , std::terminate is called. For any other ExecutionPolicy , the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Notes

std::reduce behaves like std::accumulate except the elements of the range may be grouped and rearranged in arbitrary order.

Example

side-by-side comparison between std::reduce and std::accumulate :

#if PARALLEL
#include <execution>
#define SEQ std::execution::seq,
#define PAR std::execution::par,
#else
#define SEQ
#define PAR
#endif
 
#include <chrono>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <utility>
#include <vector>
 
int main()
{
    std::cout.imbue(std::locale("en_US.UTF-8"));
    std::cout << std::fixed << std::setprecision(1);
 
    auto eval = [](auto fun)
    {
        const auto t1 = std::chrono::high_resolution_clock::now();
        const auto [name, result] = fun();
        const auto t2 = std::chrono::high_resolution_clock::now();
        const std::chrono::duration<double, std::milli> ms = t2 - t1;
        std::cout << std::setw(28) << std::left << name << "sum: "
                  << result << '\t' << "time: " << ms.count() << " ms\n";
    };
 
    {
        const std::vector<double> v(100'000'007, 0.1);
 
        eval([&v]{ return std::pair{"std::accumulate (double)",
            std::accumulate(v.cbegin(), v.cend(), 0.0)}; });
        eval([&v]{ return std::pair{"std::reduce (seq, double)",
            std::reduce(SEQ v.cbegin(), v.cend())}; });
        eval([&v]{ return std::pair{"std::reduce (par, double)",
            std::reduce(PAR v.cbegin(), v.cend())}; });
    }
 
    {
        const std::vector<long> v(100'000'007, 1);
 
        eval([&v]{ return std::pair{"std::accumulate (long)",
            std::accumulate(v.cbegin(), v.cend(), 0l)}; });
        eval([&v]{ return std::pair{"std::reduce (seq, long)",
            std::reduce(SEQ v.cbegin(), v.cend())}; });
        eval([&v]{ return std::pair{"std::reduce (par, long)",
            std::reduce(PAR v.cbegin(), v.cend())}; });
    }
}

Possible output:

// POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3; ./a.out
std::accumulate (double)    sum: 10,000,000.7	time: 356.9 ms
std::reduce (seq, double)   sum: 10,000,000.7	time: 140.1 ms
std::reduce (par, double)   sum: 10,000,000.7	time: 140.1 ms
std::accumulate (long)      sum: 100,000,007	time: 46.0 ms
std::reduce (seq, long)     sum: 100,000,007	time: 67.3 ms
std::reduce (par, long)     sum: 100,000,007	time: 63.3 ms
 
// POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3 -DPARALLEL; ./a.out
std::accumulate (double)    sum: 10,000,000.7	time: 353.4 ms
std::reduce (seq, double)   sum: 10,000,000.7	time: 140.7 ms
std::reduce (par, double)   sum: 10,000,000.7	time: 24.7 ms
std::accumulate (long)      sum: 100,000,007	time: 42.4 ms
std::reduce (seq, long)     sum: 100,000,007	time: 52.0 ms
std::reduce (par, long)     sum: 100,000,007	time: 23.1 ms

See also

sums up or folds a range of elements
(function template)
applies a function to a range of elements, storing results in a destination range
(function template)
applies an invocable, then reduces out of order
(function template)
left-folds a range of elements
(algorithm function object)