std:: reduce
Defined in header
<numeric>
|
||
template
<
class
InputIt
>
typename
std::
iterator_traits
<
InputIt
>
::
value_type
|
(1) |
(since C++17)
(constexpr since C++20) |
template
<
class
ExecutionPolicy,
class
ForwardIt
>
typename
std::
iterator_traits
<
ForwardIt
>
::
value_type
|
(2) | (since C++17) |
template
<
class
InputIt,
class
T
>
T reduce ( InputIt first, InputIt last, T init ) ; |
(3) |
(since C++17)
(constexpr since C++20) |
template
<
class
ExecutionPolicy,
class
ForwardIt,
class
T
>
T reduce
(
ExecutionPolicy
&&
policy,
|
(4) | (since C++17) |
template
<
class
InputIt,
class
T,
class
BinaryOp
>
T reduce ( InputIt first, InputIt last, T init, BinaryOp op ) ; |
(5) |
(since C++17)
(constexpr since C++20) |
template
<
class
ExecutionPolicy,
class
ForwardIt,
class
T,
class
BinaryOp
>
|
(6) | (since C++17) |
[
first
,
last
)
, possibly permuted and aggregated in unspecified manner, along with the initial value
init
over
op
.
std:: is_execution_policy_v < std:: decay_t < ExecutionPolicy >> is true . |
(until C++20) |
std:: is_execution_policy_v < std:: remove_cvref_t < ExecutionPolicy >> is true . |
(since C++20) |
Given binary_op as the actual binary operation:
- The result is non-deterministic if the binary_op is not associative or not commutative (such as floating-point addition).
-
If any of the following values is not convertible to
T
, the program is ill-formed:
-
- binary_op ( init, * first )
- binary_op ( * first, init )
- binary_op ( init, init )
- binary_op ( * first, * first )
- If any of the following conditions is satisfied, the behavior is undefined:
-
-
T
is not MoveConstructible . -
binary_op
modifies any element of
[
first,
last)
. -
binary_op
invalidates any iterator or subrange of
[
first,
last]
.
-
Parameters
first, last | - | the range of elements to apply the algorithm to |
init | - | the initial value of the generalized sum |
policy | - | the execution policy to use. See execution policy for details. |
op | - | binary FunctionObject that will be applied in unspecified order to the result of dereferencing the input iterators, the results of other op and init . |
Type requirements | ||
-
InputIt
must meet the requirements of
LegacyInputIterator
.
|
||
-
ForwardIt
must meet the requirements of
LegacyForwardIterator
.
|
Return value
[
first
,
last
)
over
op
.
The generalized sum of a group of elements over an binary operation binary_op is defined as follows:
- If the group only has one element, the sum is the value of the element.
- Otherwise, performs the following operations in order:
- Takes any two elements elem1 and elem2 from the group.
- Calculates binary_op ( elem1, elem2 ) and puts the result back to the group.
- Repeats steps 1 and 2 until there is only one element in the group.
Complexity
Given N as std:: distance ( first, last ) :
Exceptions
The overloads with a template parameter named
ExecutionPolicy
report errors as follows:
-
If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies , std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Notes
std::reduce
behaves like
std::accumulate
except the elements of the range may be grouped and rearranged in arbitrary order.
Example
side-by-side comparison between
std::reduce
and
std::accumulate
:
#if PARALLEL #include <execution> #define SEQ std::execution::seq, #define PAR std::execution::par, #else #define SEQ #define PAR #endif #include <chrono> #include <iomanip> #include <iostream> #include <numeric> #include <utility> #include <vector> int main() { std::cout.imbue(std::locale("en_US.UTF-8")); std::cout << std::fixed << std::setprecision(1); auto eval = [](auto fun) { const auto t1 = std::chrono::high_resolution_clock::now(); const auto [name, result] = fun(); const auto t2 = std::chrono::high_resolution_clock::now(); const std::chrono::duration<double, std::milli> ms = t2 - t1; std::cout << std::setw(28) << std::left << name << "sum: " << result << '\t' << "time: " << ms.count() << " ms\n"; }; { const std::vector<double> v(100'000'007, 0.1); eval([&v]{ return std::pair{"std::accumulate (double)", std::accumulate(v.cbegin(), v.cend(), 0.0)}; }); eval([&v]{ return std::pair{"std::reduce (seq, double)", std::reduce(SEQ v.cbegin(), v.cend())}; }); eval([&v]{ return std::pair{"std::reduce (par, double)", std::reduce(PAR v.cbegin(), v.cend())}; }); } { const std::vector<long> v(100'000'007, 1); eval([&v]{ return std::pair{"std::accumulate (long)", std::accumulate(v.cbegin(), v.cend(), 0l)}; }); eval([&v]{ return std::pair{"std::reduce (seq, long)", std::reduce(SEQ v.cbegin(), v.cend())}; }); eval([&v]{ return std::pair{"std::reduce (par, long)", std::reduce(PAR v.cbegin(), v.cend())}; }); } }
Possible output:
// POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 356.9 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.1 ms std::reduce (par, double) sum: 10,000,000.7 time: 140.1 ms std::accumulate (long) sum: 100,000,007 time: 46.0 ms std::reduce (seq, long) sum: 100,000,007 time: 67.3 ms std::reduce (par, long) sum: 100,000,007 time: 63.3 ms // POSIX: g++ -std=c++23 ./example.cpp -ltbb -O3 -DPARALLEL; ./a.out std::accumulate (double) sum: 10,000,000.7 time: 353.4 ms std::reduce (seq, double) sum: 10,000,000.7 time: 140.7 ms std::reduce (par, double) sum: 10,000,000.7 time: 24.7 ms std::accumulate (long) sum: 100,000,007 time: 42.4 ms std::reduce (seq, long) sum: 100,000,007 time: 52.0 ms std::reduce (par, long) sum: 100,000,007 time: 23.1 ms
See also
sums up or folds a range of elements
(function template) |
|
applies a function to a range of elements, storing results in a destination range
(function template) |
|
(C++17)
|
applies an invocable, then reduces out of order
(function template) |
(C++23)
|
left-folds a range of elements
(algorithm function object) |