std:: partition_point
Defined in header
<algorithm>
|
||
template
<
class
ForwardIt,
class
UnaryPred
>
ForwardIt partition_point ( ForwardIt first, ForwardIt last, UnaryPred p ) ; |
(since C++11)
(constexpr since C++20) |
|
Examines the partitioned range
[
first
,
last
)
and locates the end of the first partition, that is, the first element that does not satisfy
p
or
last
if all elements satisfy
p
.
If the elements
elem
of
[
first
,
last
)
are not
partitioned
with respect to the expression
bool
(
p
(
elem
)
)
, the behavior is undefined.
Parameters
first, last | - | the partitioned range of elements to examine |
p | - |
unary predicate which returns
true
for the elements found in the beginning of the range.
The expression
p
(
v
)
must be convertible to
bool
for every argument
|
Type requirements | ||
-
ForwardIt
must meet the requirements of
LegacyForwardIterator
.
|
||
-
UnaryPred
must meet the requirements of
Predicate
.
|
Return value
The iterator past the end of the first partition within
[
first
,
last
)
or
last
if all elements satisfy
p
.
Complexity
Given \(\scriptsize N\) N as std:: distance ( first, last ) , performs \(\scriptsize O(log(N))\) O(log(N)) applications of the predicate p .
Notes
This algorithm is a more general form of
std::lower_bound
, which can be expressed in terms of
std::partition_point
with the predicate
[
&
]
(
const
auto
&
e
)
{
return
e
<
value
;
}
)
;
.
Possible implementation
template<class ForwardIt, class UnaryPred> constexpr //< since C++20 ForwardIt partition_point(ForwardIt first, ForwardIt last, UnaryPred p) { for (auto length = std::distance(first, last); 0 < length; ) { auto half = length / 2; auto middle = std::next(first, half); if (p(*middle)) { first = std::next(middle); length -= (half + 1); } else length = half; } return first; } |
Example
#include <algorithm> #include <array> #include <iostream> #include <iterator> auto print_seq = [](auto rem, auto first, auto last) { for (std::cout << rem; first != last; std::cout << *first++ << ' ') {} std::cout << '\n'; }; int main() { std::array v{1, 2, 3, 4, 5, 6, 7, 8, 9}; auto is_even = [](int i) { return i % 2 == 0; }; std::partition(v.begin(), v.end(), is_even); print_seq("After partitioning, v: ", v.cbegin(), v.cend()); const auto pp = std::partition_point(v.cbegin(), v.cend(), is_even); const auto i = std::distance(v.cbegin(), pp); std::cout << "Partition point is at " << i << "; v[" << i << "] = " << *pp << '\n'; print_seq("First partition (all even elements): ", v.cbegin(), pp); print_seq("Second partition (all odd elements): ", pp, v.cend()); }
Possible output:
After partitioning, v: 8 2 6 4 5 3 7 1 9 Partition point is at 4; v[4] = 5 First partition (all even elements): 8 2 6 4 Second partition (all odd elements): 5 3 7 1 9
See also
(C++11)
|
finds the first element satisfying specific criteria
(function template) |
(C++11)
|
checks whether a range is sorted into ascending order
(function template) |
returns an iterator to the first element
not less
than the given value
(function template) |
|
(C++20)
|
locates the partition point of a partitioned range
(algorithm function object) |