std::ranges:: copy, std::ranges:: copy_if, std::ranges:: copy_result, std::ranges:: copy_if_result

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: input_iterator I, std:: sentinel_for < I > S, std:: weakly_incrementable O >

requires std:: indirectly_copyable < I, O >
constexpr copy_result < I, O >

copy ( I first, S last, O result ) ;
(1) (since C++20)
template < ranges:: input_range R, std:: weakly_incrementable O >

requires std:: indirectly_copyable < ranges:: iterator_t < R > , O >
constexpr copy_result < ranges:: borrowed_iterator_t < R > , O >

copy ( R && r, O result ) ;
(2) (since C++20)
template < std:: input_iterator I, std:: sentinel_for < I > S, std:: weakly_incrementable O,

class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_copyable < I, O >
constexpr copy_if_result < I, O >

copy_if ( I first, S last, O result, Pred pred, Proj proj = { } ) ;
(3) (since C++20)
template < ranges:: input_range R, std:: weakly_incrementable O,

class Proj = std:: identity ,
std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
requires std:: indirectly_copyable < ranges:: iterator_t < R > , O >
constexpr copy_if_result < ranges:: borrowed_iterator_t < R > , O >

copy_if ( R && r, O result, Pred pred, Proj proj = { } ) ;
(4) (since C++20)
Helper types
template < class I, class O >
using copy_result = ranges:: in_out_result < I, O > ;
(5) (since C++20)
template < class I, class O >
using copy_if_result = ranges:: in_out_result < I, O > ;
(6) (since C++20)

Copies the elements in the range, defined by [ first , last ) , to another range beginning at result .

1) Copies all elements in the range [ first , last ) starting from first and proceeding to last - 1 . The behavior is undefined if result is within the range [ first , last ) . In this case, ranges::copy_backward may be used instead.
3) Only copies the elements for which the predicate pred returns true . The relative order of the elements that are copied is preserved. The behavior is undefined if the source and the destination ranges overlap.
2,4) Same as (1,3) , but uses r as the source range, as if using ranges:: begin ( r ) as first and ranges:: end ( r ) as last .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the range of elements to copy
r - the range of elements to copy
result - the beginning of the destination range.
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

A ranges::in_out_result containing an input iterator equal to last and an output iterator past the last element copied.

Complexity

1,2) Exactly last - first assignments.
3,4) Exactly last - first applications of the predicate and projection, between 0 and last - first assignments (assignment for every element for which predicate returns true , dependent on predicate and input data).

Notes

In practice, implementations of ranges::copy avoid multiple assignments and use bulk copy functions such as std::memmove if the value type is TriviallyCopyable and the iterator types satisfy contiguous_iterator .

When copying overlapping ranges, ranges::copy is appropriate when copying to the left (beginning of the destination range is outside the source range) while ranges::copy_backward is appropriate when copying to the right (end of the destination range is outside the source range).

Possible implementation

copy
struct copy_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O>
    requires std::indirectly_copyable<I, O>
    constexpr ranges::copy_result<I, O> operator()(I first, S last, O result) const
    {
        for (; first != last; ++first, (void)++result)
            *result = *first;
        return {std::move(first), std::move(result)};
    }
 
    template<ranges::input_range R, std::weakly_incrementable O>
    requires std::indirectly_copyable<ranges::iterator_t<R>, O>
    constexpr ranges::copy_result<ranges::borrowed_iterator_t<R>, O>
        operator()(R&& r, O result) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(result));
    }
};
 
inline constexpr copy_fn copy;
copy_if
struct copy_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    requires std::indirectly_copyable<I, O>
    constexpr ranges::copy_if_result<I, O>
        operator()(I first, S last, O result, Pred pred, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (std::invoke(pred, std::invoke(proj, *first)))
            {
                *result = *first;
                ++result;
            }
        return {std::move(first), std::move(result)};
    }
 
    template<ranges::input_range R, std::weakly_incrementable O,
             class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    requires std::indirectly_copyable<ranges::iterator_t<R>, O>
    constexpr ranges::copy_if_result<ranges::borrowed_iterator_t<R>, O>
        operator()(R&& r, O result, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::move(result),
                       std::ref(pred), std::ref(proj));
    }
};
 
inline constexpr copy_if_fn copy_if;

Example

The following code uses ranges::copy to both copy the contents of one std::vector to another and to display the resulting std::vector :

#include <algorithm>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
 
int main()
{
    std::vector<int> source(10);
    std::iota(source.begin(), source.end(), 0);
 
    std::vector<int> destination;
 
    std::ranges::copy(source.begin(), source.end(),
                      std::back_inserter(destination));
// or, alternatively,
//  std::vector<int> destination(source.size());
//  std::ranges::copy(source.begin(), source.end(), destination.begin());
// either way is equivalent to
//  std::vector<int> destination = source;
 
    std::cout << "destination contains: ";
 
    std::ranges::copy(destination, std::ostream_iterator<int>(std::cout, " "));
    std::cout << '\n';
 
    std::cout << "odd numbers in destination are: ";
 
    std::ranges::copy_if(destination, std::ostream_iterator<int>(std::cout, " "),
                         [](int x) { return (x % 2) == 1; });
    std::cout << '\n';
}

Output:

destination contains: 0 1 2 3 4 5 6 7 8 9
odd numbers in destination are: 1 3 5 7 9

See also

copies a range of elements in backwards order
(algorithm function object)
creates a copy of a range that is reversed
(algorithm function object)
copies a number of elements to a new location
(algorithm function object)
assigns a range of elements a certain value
(algorithm function object)
copies a range of elements omitting those that satisfy specific criteria
(algorithm function object)
copies a range of elements to a new location
(function template)