std::ranges:: is_heap_until

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: random_access_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_strict_weak_order
< std :: projected < I, Proj >> Comp = ranges:: less >

constexpr I is_heap_until ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (since C++20)
template < ranges:: random_access_range R, class Proj = std:: identity ,

std:: indirect_strict_weak_order
< std :: projected
< ranges:: iterator_t < R > , Proj >> Comp = ranges:: less >
constexpr ranges:: borrowed_iterator_t < R >

is_heap_until ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (since C++20)

Within the specified range, finds the longest range which starting from the beginning of the specified range and represents a heap with respect to comp and proj .

1) The specified range is [ first , last ) .
2) The specified range is r .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the range of elements to examine
r - the range of elements to examine
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

The last iterator iter in the specified range for which:

1) The range [ first , iter ) is a heap with respect to comp and proj .
2) The range [ ranges:: begin ( r ) , iter ) is a heap with respect to comp and proj .

Complexity

O(N) applications of comp and proj , where N is:

1) ranges:: distance ( first, last )

Possible implementation

struct is_heap_until_fn
{
    template<std::random_access_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<I, Proj>> Comp = ranges::less>
    constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        std::iter_difference_t<I> n{ranges::distance(first, last)}, dad{0}, son{1};
        for (; son != n; ++son)
        {
            if (std::invoke(comp, std::invoke(proj, *(first + dad)),
                                  std::invoke(proj, *(first + son))))
                return first + son;
            else if ((son % 2) == 0)
                ++dad;
        }
        return first + n;
    }
 
    template<ranges::random_access_range R, class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));
    }
};
 
inline constexpr is_heap_until_fn is_heap_until{};

Example

The example renders a given vector as a (balanced) Binary tree .

#include <algorithm>
#include <cmath>
#include <iostream>
#include <iterator>
#include <vector>
 
void out(const auto& what, int n = 1)
{
    while (n-- > 0)
        std::cout << what;
}
 
void draw_bin_tree(auto first, auto last)
{
    auto bails = [](int n, int w)
    {
        auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); };
        n /= 2;
        if (!n)
            return;
        for (out(' ', w); n-- > 0;)
            b(w), out(' ', w + w + 1);
        out('\n');
    };
 
    auto data = [](int n, int w, auto& first, auto last)
    {
        for (out(' ', w); n-- > 0 && first != last; ++first)
            out(*first), out(' ', w + w + 1);
        out('\n');
    };
 
    auto tier = [&](int t, int m, auto& first, auto last)
    {
        const int n{1 << t};
        const int w{(1 << (m - t - 1)) - 1};
        bails(n, w), data(n, w, first, last);
    };
 
    const auto size{std::ranges::distance(first, last)};
    const int m{static_cast<int>(std::ceil(std::log2(1 + size)))};
    for (int i{}; i != m; ++i)
        tier(i, m, first, last);
}
 
int main()
{
    std::vector<int> v{3, 1, 4, 1, 5, 9};
    std::ranges::make_heap(v);
 
    // probably mess up the heap
    v.push_back(2);
    v.push_back(6);
 
    out("v after make_heap and push_back:\n");
    draw_bin_tree(v.begin(), v.end());
 
    out("the max-heap prefix of v:\n");
    const auto heap_end = std::ranges::is_heap_until(v);
    draw_bin_tree(v.begin(), heap_end);
}

Output:

v after make_heap and push_back: 
       9               
   ┌───┴───┐       
   5       4       
 ┌─┴─┐   ┌─┴─┐   
 1   1   3   2   
┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ 
6 
the max-heap prefix of v: 
   9       
 ┌─┴─┐   
 5   4   
┌┴┐ ┌┴┐ 
1 1 3 2

See also

checks if the given range is a max heap
(algorithm function object)
creates a max heap out of a range of elements
(algorithm function object)
adds an element to a max heap
(algorithm function object)
removes the largest element from a max heap
(algorithm function object)
turns a max heap into a range of elements sorted in ascending order
(algorithm function object)
finds the largest subrange that is a max heap
(function template)