std::ranges:: move_backward, std::ranges:: move_backward_result

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: bidirectional_iterator I1, std:: sentinel_for < I1 > S1,

std:: bidirectional_iterator I2 >
requires std:: indirectly_movable < I1, I2 >
constexpr move_backward_result < I1, I2 >

move_backward ( I1 first, S1 last, I2 result ) ;
(1) (since C++20)
template < ranges:: bidirectional_range R, std:: bidirectional_iterator I >

requires std:: indirectly_movable < ranges:: iterator_t < R > , I >
constexpr move_backward_result < ranges:: borrowed_iterator_t < R > , I >

move_backward ( R && r, I result ) ;
(2) (since C++20)
Helper types
template < class I, class O >
using move_backward_result = ranges:: in_out_result < I, O > ;
(3) (since C++20)
1) Moves the elements in the range, defined by [ first , last ) , to another range [ result - N , result ) , where N = ranges:: distance ( first, last ) . The elements are moved in reverse order (the last element is moved first), but their relative order is preserved. The behavior is undefined if result is within ( first, last ] . In such a case, ranges::move may be used instead.
2) Same as (1) , but uses r as the source range, as if using ranges:: begin ( r ) as first , and ranges:: end ( r ) as last .

The elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily the same values as before the move, as if using * ( result - n ) = ranges:: iter_move ( last - n ) for each integer n , where 0 ≤ n < N .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first - the beginning of the range of elements to move
last - the end of the range of elements to move
r - the range of the elements to move
result - the end of the destination range

Return value

{ last, result - N } .

Complexity

1) Exactly N move assignments.
2) Exactly ranges:: distance ( r ) move assignments.

Notes

When moving overlapping ranges, ranges::move is appropriate when moving to the left (beginning of the destination range is outside the source range) while ranges::move_backward is appropriate when moving to the right (end of the destination range is outside the source range).

Possible implementation

struct move_backward_fn
{
    template<std::bidirectional_iterator I1, std::sentinel_for<I1> S1,
             std::bidirectional_iterator I2>
    requires std::indirectly_movable<I1, I2>
    constexpr ranges::move_backward_result<I1, I2>
        operator()(I1 first, S1 last, I2 result) const
    {
        auto i {last};
        for (; i != first; *--result = ranges::iter_move(--i))
        {}
        return {std::move(last), std::move(result)};
    }
 
    template<ranges::bidirectional_range R, std::bidirectional_iterator I>
    requires std::indirectly_movable<ranges::iterator_t<R>, I>
    constexpr ranges::move_backward_result<ranges::borrowed_iterator_t<R>, I>
        operator()(R&& r, I result) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(result));
    }
};
 
inline constexpr move_backward_fn move_backward {};

Example

#include <algorithm>
#include <iostream>
#include <string>
#include <string_view>
#include <vector>
 
using Vec = std::vector<std::string>;
 
void print(std::string_view rem, Vec const& vec)
{
    std::cout << rem << "[" << vec.size() << "]: ";
    for (const std::string& s : vec)
        std::cout << (s.size() ? s : std::string{"·"}) << ' ';
    std::cout << '\n';
}
 
int main()
{
    Vec a{"▁", "▂", "▃", "▄", "▅", "▆", "▇", "█"};
    Vec b(a.size());
 
    print("Before move:\n" "a", a);
    print("b", b);
 
    std::ranges::move_backward(a, b.end());
 
    print("\n" "Move a >> b:\n" "a", a);
    print("b", b);
 
    std::ranges::move_backward(b.begin(), b.end(), a.end());
    print("\n" "Move b >> a:\n" "a", a);
    print("b", b);
 
    std::ranges::move_backward(a.begin(), a.begin()+3, a.end());
    print("\n" "Overlapping move a[0, 3) >> a[5, 8):\n" "a", a);
}

Possible output:

Before move:
a[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █
b[8]: · · · · · · · ·
 
Move a >> b:
a[8]: · · · · · · · ·
b[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █
 
Move b >> a:
a[8]: ▁ ▂ ▃ ▄ ▅ ▆ ▇ █
b[8]: · · · · · · · ·
 
Overlapping move a[0, 3) >> a[5, 8):
a[8]: · · · ▄ ▅ ▁ ▂ ▃

See also

moves a range of elements to a new location
(algorithm function object)
copies a range of elements to a new location
(algorithm function object)
copies a range of elements in backwards order
(algorithm function object)
(C++11)
moves a range of elements to a new location
(function template)
(C++11)
converts the argument to an xvalue
(function template)