std::ranges:: fold_left_first
Defined in header
<algorithm>
|
||
Call signature
|
||
template
<
std::
input_iterator
I,
std::
sentinel_for
<
I
>
S,
/*indirectly-binary-left-foldable*/
<
std::
iter_value_t
<
I
>
, I
>
F
>
|
(1) | (since C++23) |
template
<
ranges::
input_range
R,
/*indirectly-binary-left-foldable*/
<
|
(2) | (since C++23) |
Helper concepts
|
||
template
<
class
F,
class
T,
class
I
>
concept /*indirectly-binary-left-foldable*/ = /* see description */ ; |
(3) | ( exposition only* ) |
Left-
folds
the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(x
1
, x
2
), x
3
), ...), x
n
)
, where
x
1
,
x
2
, ...,
x
n
are elements of the range.
Informally,
ranges::fold_left_first
behaves like
std::accumulate
's overload that accepts a binary predicate, except that the
*
first
is used internally as an initial element.
The behavior is undefined if
[
first
,
last
)
is not a valid range.
[
first
,
last
)
. Equivalent to
return
ranges::
fold_left_first_with_iter
(
std
::
move
(
first
)
, last, f
)
.
value
.
Helper concepts
|
||
template
<
class
F,
class
T,
class
I,
class
U
>
concept
/*indirectly-binary-left-foldable-impl*/
=
|
(3A) | ( exposition only* ) |
template
<
class
F,
class
T,
class
I
>
concept
/*indirectly-binary-left-foldable*/
=
|
(3B) | ( exposition only* ) |
The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup .
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Parameters
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
f | - | the binary function object |
Return value
An object of type std:: optional < U > that contains the result of left- fold of the given range over f , where U is equivalent to decltype ( ranges:: fold_left ( std :: move ( first ) , last, std:: iter_value_t < I > ( * first ) , f ) ) .
If the range is empty, std:: optional < U > ( ) is returned.
Possible implementations
struct fold_left_first_fn { template<std::input_iterator I, std::sentinel_for<I> S, /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F> requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>> constexpr auto operator()(I first, S last, F f) const { using U = decltype( ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f) ); if (first == last) return std::optional<U>(); std::optional<U> init(std::in_place, *first); for (++first; first != last; ++first) *init = std::invoke(f, std::move(*init), *first); return std::move(init); } template<ranges::input_range R, /*indirectly-binary-left-foldable*/< ranges::range_value_t<R>, ranges::iterator_t<R>> F> requires std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>> constexpr auto operator()(R&& r, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(f)); } }; inline constexpr fold_left_first_fn fold_left_first; |
Complexity
Exactly ranges:: distance ( first, last ) - 1 (assuming the range is not empty) applications of the function object f .
Notes
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges:: fold_left | left | init | U |
ranges :: fold_left_first | left | first element | std:: optional < U > |
ranges:: fold_right | right | init | U |
ranges:: fold_right_last | right | last element | std:: optional < U > |
ranges:: fold_left_with_iter | left | init |
(1) ranges:: in_value_result < I, U > (2) ranges:: in_value_result < BR, U > , where BR is ranges:: borrowed_iterator_t < R > |
ranges:: fold_left_first_with_iter | left | first element |
(1) ranges:: in_value_result < I, std:: optional < U >> (2) ranges:: in_value_result < BR, std:: optional < U >> where BR is ranges:: borrowed_iterator_t < R > |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold
|
202207L | (C++23) |
std::ranges
fold algorithms
|
Example
#include <algorithm> #include <functional> #include <iostream> #include <ranges> #include <utility> #include <vector> int main() { std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = std::ranges::fold_left_first(v.begin(), v.end(), std::plus<int>()); // (1) std::cout << "*sum: " << sum.value() << '\n'; auto mul = std::ranges::fold_left_first(v, std::multiplies<int>()); // (2) std::cout << "*mul: " << mul.value() << '\n'; // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}}; auto sec = std::ranges::fold_left_first ( data | std::ranges::views::values, std::multiplies<>() ); std::cout << "*sec: " << *sec << '\n'; // use a program defined function object (lambda-expression): auto val = std::ranges::fold_left_first(v, [](int x, int y) { return x + y + 13; }); std::cout << "*val: " << *val << '\n'; }
Output:
*sum: 36 *mul: 40320 *sec: 42 *val: 127
References
- C++23 standard (ISO/IEC 14882:2024):
-
- 27.6.18 Fold [alg.fold]
See also
(C++23)
|
left-folds a range of elements
(algorithm function object) |
(C++23)
|
right-folds a range of elements
(algorithm function object) |
(C++23)
|
right-folds a range of elements using the last element as an initial value
(algorithm function object) |
(C++23)
|
left-folds a range of elements, and returns a
pair
(iterator, value)
(algorithm function object) |
left-folds a range of elements using the first element as an initial value, and returns a
pair
(iterator,
optional
)
(algorithm function object) |
|
sums up or folds a range of elements
(function template) |
|
(C++17)
|
similar to
std::accumulate
, except out of order
(function template) |