std::ranges:: is_heap

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: random_access_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
std:: indirect_strict_weak_order
< std :: projected < I, Proj >> Comp = ranges:: less >

constexpr bool is_heap ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (since C++20)
template < ranges:: random_access_range R, class Proj = std:: identity ,

std:: indirect_strict_weak_order
< std :: projected
< ranges:: iterator_t < R > , Proj >> Comp = ranges:: less >

constexpr bool is_heap ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (since C++20)

Checks whether the specified range represents a heap with respect to comp and proj .

1) The specified range is [ first , last ) .
2) The specified range is r .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the iterator and sentinel designating the range of elements to examine
r - the range of elements to examine
comp - comparator to apply to the projected elements
proj - projection to apply to the elements

Return value

1) ranges:: is_heap_until ( first, last, comp, proj ) == last
2) ranges:: is_heap_until ( r, comp, proj ) == ranges:: end ( r )

Complexity

O(N) applications of comp and proj , where N is:

1) ranges:: distance ( first, last )

Possible implementation

struct is_heap_fn
{
    template<std::random_access_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<I, Proj>> Comp = ranges::less>
    constexpr bool operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        return (last == ranges::is_heap_until(first, last,
                                              std::move(comp), std::move(proj)));
    }
 
    template<ranges::random_access_range R, class Proj = std::identity,
             std::indirect_strict_weak_order
                 <std::projected<ranges::iterator_t<R>, Proj>> Comp = ranges::less>
    constexpr bool operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::move(comp), std::move(proj));
    }
};
 
inline constexpr is_heap_fn is_heap{};

Example

#include <algorithm>
#include <bit>
#include <cmath>
#include <iostream>
#include <vector>
 
void out(const auto& what, int n = 1)
{
    while (n-- > 0)
        std::cout << what;
}
 
void draw_heap(const auto& v)
{
    auto bails = [](int n, int w)
    {
        auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); };
        n /= 2;
        if (!n)
            return;
        for (out(' ', w); n-- > 0;)
            b(w), out(' ', w + w + 1);
        out('\n');
    };
 
    auto data = [](int n, int w, auto& first, auto last)
    {
        for (out(' ', w); n-- > 0 && first != last; ++first)
            out(*first), out(' ', w + w + 1);
        out('\n');
    };
 
    auto tier = [&](int t, int m, auto& first, auto last)
    {
        const int n{1 << t};
        const int w{(1 << (m - t - 1)) - 1};
        bails(n, w), data(n, w, first, last);
    };
 
    const int m{static_cast<int>(std::ceil(std::log2(1 + v.size())))};
    auto first{v.cbegin()};
    for (int i{}; i != m; ++i)
        tier(i, m, first, v.cend());
}
 
int main()
{
    std::vector<int> v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8};
 
    out("initially, v:\n");
    for (auto i : v)
        std::cout << i << ' ';
    out('\n');
 
    if (!std::ranges::is_heap(v))
    {
        out("making heap...\n");
        std::ranges::make_heap(v);
    }
 
    out("after make_heap, v:\n");
    for (auto t{1U}; auto i : v)
        std::cout << i << (std::has_single_bit(++t) ? " │ " : " ");
 
    out("\n" "corresponding binary tree is:\n");
    draw_heap(v);
}

Output:

initially, v:
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8
making heap...
after make_heap, v:
9 │ 8 9 │ 6 5 8 9 │ 3 5 3 5 3 4 7 2 │ 1 2 3 1
corresponding binary tree is:
               9
       ┌───────┴───────┐
       8               9
   ┌───┴───┐       ┌───┴───┐
   6       5       8       9
 ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐
 3   5   3   5   3   4   7   2
┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐
1 2 3 1

See also

finds the largest subrange that is a max heap
(algorithm function object)
creates a max heap out of a range of elements
(algorithm function object)
adds an element to a max heap
(algorithm function object)
removes the largest element from a max heap
(algorithm function object)
turns a max heap into a range of elements sorted in ascending order
(algorithm function object)
(C++11)
checks if the given range is a max heap
(function template)