std::ranges:: fold_right_last

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
(C++23)
fold_right_last
(C++23)
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: bidirectional_iterator I, std:: sentinel_for < I > S,

/*indirectly-binary-right-foldable*/ < std:: iter_value_t < I > , I > F >
requires std:: constructible_from <
std:: iter_value_t < I > , std:: iter_reference_t < I >>
constexpr auto

fold_right_last ( I first, S last, F f ) ;
(1) (since C++23)
template < ranges:: bidirectional_range R,

/*indirectly-binary-right-foldable*/ <
ranges:: range_value_t < R > , ranges:: iterator_t < R >> F >
requires std:: constructible_from <
ranges:: range_value_t < R > , ranges:: range_reference_t < R >>
constexpr auto

fold_right_last ( R && r, F f ) ;
(2) (since C++23)
Helper concepts
template < class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ = /* see description */ ;
(3) ( exposition only* )
template < class F, class T, class I >
concept /*indirectly-binary-right-foldable*/ = /* see description */ ;
(4) ( exposition only* )

Right- folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(x 1 , f(x 2 , ...f(x n-1 , x n ))) , where x 1 , x 2 , ..., x n are elements of the range.

Informally, ranges::fold_right_last behaves like std :: fold_left ( ranges:: reverse ( r ) , *-- last, /*flipped*/ ( f ) ) (assuming the range is not empty).

The behavior is undefined if [ first , last ) is not a valid range.

1) The range is [ first , last ) . Given U as decltype ( ranges:: fold_right ( first, last, std:: iter_value_t < I > ( * first ) , f ) ) , equivalent to:
if (first == last)
    return std::optional<U>();
I tail = ranges::prev(ranges::next(first, std::move(last)));
return std::optional<U>(std::in_place, ranges::fold_right(std::move(first), tail,
    std::iter_value_t<I>(*tail), std::move(f)));
2) Same as (1) , except that uses r as the range, as if by using ranges:: begin ( r ) as first and ranges:: end ( r ) as last .
3) Equivalent to:
Helper concepts
template < class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
std:: movable < T > &&
std:: movable < U > &&
std:: convertible_to < T, U > &&
std:: invocable < F & , U, std:: iter_reference_t < I >> &&
std:: assignable_from < U & ,

std:: invoke_result_t < F & , U, std:: iter_reference_t < I >>> ;
(3A) ( exposition only* )
template < class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
std:: copy_constructible < F > &&
std:: indirectly_readable < I > &&
std:: invocable < F & , T, std:: iter_reference_t < I >> &&
std:: convertible_to < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >> ,
std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> &&
/*indirectly-binary-left-foldable-impl*/ < F, T, I,

std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> ;
(3B) ( exposition only* )
4) Equivalent to:
Helper concepts
template < class F, class T, class I >

concept /*indirectly-binary-right-foldable*/ =

/*indirectly-binary-left-foldable*/ < /*flipped*/ < F > , T, I > ;
(4A) ( exposition only* )
Helper class templates
template < class F >

class /*flipped*/
{
F f ; // exposition only
public :
template < class T, class U >
requires std:: invocable < F & , U, T >
std:: invoke_result_t < F & , U, T > operator ( ) ( T && , U && ) ;

} ;
(4B) ( exposition only* )

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value

An object of type std:: optional < U > that contains the result of right- fold of the given range over f .

If the range is empty, std:: optional < U > ( ) is returned.

Possible implementations

struct fold_right_last_fn
{
    template<std::bidirectional_iterator I, std::sentinel_for<I> S,
             /*indirectly-binary-right-foldable*/<std::iter_value_t<I>, I> F>
    requires
        std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
    constexpr auto operator()(I first, S last, F f) const
    {
        using U = decltype(
            ranges::fold_right(first, last, std::iter_value_t<I>(*first), f));
 
        if (first == last)
            return std::optional<U>();
        I tail = ranges::prev(ranges::next(first, std::move(last)));
        return std::optional<U>(std::in_place,
            ranges::fold_right(std::move(first), tail, std::iter_value_t<I>(*tail),
                               std::move(f)));
    }
 
    template<ranges::bidirectional_range R,
             /*indirectly_binary_right_foldable*/<
                 ranges::range_value_t<R>, ranges::iterator_t<R>> F>
    requires
        std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
    constexpr auto operator()(R&& r, F f) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(f));
    }
};
 
inline constexpr fold_right_last_fn fold_right_last;

Complexity

Exactly ranges:: distance ( first, last ) applications of the function object f .

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges:: fold_left left init U
ranges:: fold_left_first left first element std:: optional < U >
ranges:: fold_right right init U
ranges :: fold_right_last right last element std:: optional < U >
ranges:: fold_left_with_iter left init

(1) ranges:: in_value_result < I, U >

(2) ranges:: in_value_result < BR, U > ,

where BR is ranges:: borrowed_iterator_t < R >

ranges:: fold_left_first_with_iter left first element

(1) ranges:: in_value_result < I, std:: optional < U >>

(2) ranges:: in_value_result < BR, std:: optional < U >>

where BR is ranges:: borrowed_iterator_t < R >

Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    auto v = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<std::string> vs {"A", "B", "C", "D"};
 
    auto r1 = std::ranges::fold_right_last(v.begin(), v.end(), std::plus<>()); // (1)
    std::cout << "*r1: " << *r1 << '\n';
 
    auto r2 = std::ranges::fold_right_last(vs, std::plus<>()); // (2)
    std::cout << "*r2: " << *r2 << '\n';
 
    // Use a program defined function object (lambda-expression):
    auto r3 = std::ranges::fold_right_last(v, [](int x, int y) { return x + y + 99; });
    std::cout << "*r3: " << *r3 << '\n';
 
    // Get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}};
    auto r4 = std::ranges::fold_right_last
    (
        data | std::ranges::views::values, std::multiplies<>()
    );
    std::cout << "*r4: " << *r4 << '\n';
}

Output:

*r1: 36
*r2: ABCD
*r3: 729
*r4: 42

References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

See also

right-folds a range of elements
(algorithm function object)
left-folds a range of elements
(algorithm function object)
left-folds a range of elements using the first element as an initial value
(algorithm function object)
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional )
(algorithm function object)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate , except out of order
(function template)