std::ranges:: fold_left_first_with_iter, std::ranges:: fold_left_first_with_iter_result

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
fold_left_first_with_iter
(C++23)
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: input_iterator I, std:: sentinel_for < I > S,

/*indirectly-binary-left-foldable*/ < std:: iter_value_t < I > , I > F >
requires std:: constructible_from <
std:: iter_value_t < I > , std:: iter_reference_t < I >>
constexpr /* see description */

fold_left_first_with_iter ( I first, S last, F f ) ;
(1) (since C++23)
template < ranges:: input_range R,

/*indirectly-binary-left-foldable*/ <
ranges:: range_value_t < R > , ranges:: iterator_t < R >> F >
requires std:: constructible_from <
ranges:: range_value_t < R > , ranges:: range_reference_t < R >>
constexpr /* see description */

fold_left_first_with_iter ( R && r, F f ) ;
(2) (since C++23)
Helper concepts
template < class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ = /* see description */ ;
(3) ( exposition only* )
Helper class template
template < class I, class T >
using fold_left_first_with_iter_result = ranges:: in_value_result < I, T > ;
(4) (since C++23)

Left- folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(x 1 , x 2 ), x 3 ), ...), x n ) , where x 1 , x 2 , ..., x n are elements of the range.

Informally, ranges::fold_left_first_with_iter behaves like std::accumulate 's overload that accepts a binary predicate, except that the * first is used internally as an initial element.

The behavior is undefined if [ first , last ) is not a valid range.

1) The range is [ first , last ) .
2) Same as (1) , except that uses r as the range, as if by using ranges:: begin ( r ) as first and ranges:: end ( r ) as last .
3) Equivalent to:
Helper concepts
template < class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
std:: movable < T > &&
std:: movable < U > &&
std:: convertible_to < T, U > &&
std:: invocable < F & , U, std:: iter_reference_t < I >> &&
std:: assignable_from < U & ,

std:: invoke_result_t < F & , U, std:: iter_reference_t < I >>> ;
(3A) ( exposition only* )
template < class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
std:: copy_constructible < F > &&
std:: indirectly_readable < I > &&
std:: invocable < F & , T, std:: iter_reference_t < I >> &&
std:: convertible_to < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >> ,
std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> &&
/*indirectly-binary-left-foldable-impl*/ < F, T, I,

std:: decay_t < std:: invoke_result_t < F & , T, std:: iter_reference_t < I >>>> ;
(3B) ( exposition only* )
4) The return type alias. See " Return value " section for details.

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value

Let U be decltype ( ranges:: fold_left ( std :: move ( first ) , last, std:: iter_value_t < I > ( * first ) , f ) ) .

1) An object of type ranges :: fold_left_first_with_iter_result < I, std:: optional < U >> .
  • The member ranges :: in_value_result :: in holds an iterator to the end of the range.
  • The member ranges :: in_value_result :: value holds the result of the left- fold of given range over f .
If the range is empty, the return value is { std :: move ( first ) , std:: optional < U > ( ) } .
2) Same as (1) except that the return type is ranges :: fold_left_first_with_iter_result < ranges:: borrowed_iterator_t < R > , std:: optional < U >> .

Possible implementations

class fold_left_first_with_iter_fn
{
    template<class O, class I, class S, class F>
    constexpr auto impl(I&& first, S&& last, F f) const
    {
        using U = decltype(
            ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)
        );
        using Ret = ranges::fold_left_first_with_iter_result<O, std::optional<U>>;
        if (first == last)
            return Ret{std::move(first), std::optional<U>()};
        std::optional<U> init(std::in_place, *first);
        for (++first; first != last; ++first)
            *init = std::invoke(f, std::move(*init), *first);
        return Ret{std::move(first), std::move(init)};
    }
 
public:
    template<std::input_iterator I, std::sentinel_for<I> S,
             /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F>
    requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
    constexpr auto operator()(I first, S last, F f) const
    {
        return impl<I>(std::move(first), std::move(last), std::ref(f));
    }
 
    template<ranges::input_range R, /*indirectly-binary-left-foldable*/<
        ranges::range_value_t<R>, ranges::iterator_t<R>> F>
    requires
        std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
    constexpr auto operator()(R&& r, F f) const
    {
        return impl<ranges::borrowed_iterator_t<R>>(
            ranges::begin(r), ranges::end(r), std::ref(f)
        );
    }
};
 
inline constexpr fold_left_first_with_iter_fn fold_left_first_with_iter;

Complexity

Exactly ranges:: distance ( first, last ) - 1 (assuming the range is not empty) applications of the function object f .

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges:: fold_left left init U
ranges:: fold_left_first left first element std:: optional < U >
ranges:: fold_right right init U
ranges:: fold_right_last right last element std:: optional < U >
ranges:: fold_left_with_iter left init

(1) ranges:: in_value_result < I, U >

(2) ranges:: in_value_result < BR, U > ,

where BR is ranges:: borrowed_iterator_t < R >

ranges :: fold_left_first_with_iter left first element

(1) ranges:: in_value_result < I, std:: optional < U >>

(2) ranges:: in_value_result < BR, std:: optional < U >>

where BR is ranges:: borrowed_iterator_t < R >

Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    std::vector v{1, 2, 3, 4, 5, 6, 7, 8};
 
    auto sum = std::ranges::fold_left_first_with_iter
    (
        v.begin(), v.end(), std::plus<int>()
    );
    std::cout << "sum: " << sum.value.value() << '\n';
    assert(sum.in == v.end());
 
    auto mul = std::ranges::fold_left_first_with_iter(v, std::multiplies<int>());
    std::cout << "mul: " << mul.value.value() << '\n';
    assert(mul.in == v.end());
 
    // get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 7.f}};
    auto sec = std::ranges::fold_left_first_with_iter
    (
        data | std::ranges::views::values, std::multiplies<>()
    );
    std::cout << "sec: " << sec.value.value() << '\n';
 
    // use a program defined function object (lambda-expression):
    auto lambda = [](int x, int y) { return x + y + 2; };
    auto val = std::ranges::fold_left_first_with_iter(v, lambda);
    std::cout << "val: " << val.value.value() << '\n';
    assert(val.in == v.end());
}

Output:

sum: 36
mul: 40320
sec: 42
val: 50

References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

See also

left-folds a range of elements
(algorithm function object)
left-folds a range of elements using the first element as an initial value
(algorithm function object)
right-folds a range of elements
(algorithm function object)
right-folds a range of elements using the last element as an initial value
(algorithm function object)
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate , except out of order
(function template)