std::ranges:: all_of, std::ranges:: any_of, std::ranges:: none_of
Defined in header
<algorithm>
|
||
Call signature
|
||
template
<
std::
input_iterator
I,
std::
sentinel_for
<
I
>
S,
class
Proj
=
std::
identity
,
|
(1) | (since C++20) |
template
<
ranges::
input_range
R,
class
Proj
=
std::
identity
,
std::
indirect_unary_predicate
<
|
(2) | (since C++20) |
template
<
std::
input_iterator
I,
std::
sentinel_for
<
I
>
S,
class
Proj
=
std::
identity
,
|
(3) | (since C++20) |
template
<
ranges::
input_range
R,
class
Proj
=
std::
identity
,
std::
indirect_unary_predicate
<
|
(4) | (since C++20) |
template
<
std::
input_iterator
I,
std::
sentinel_for
<
I
>
S,
class
Proj
=
std::
identity
,
|
(5) | (since C++20) |
template
<
ranges::
input_range
R,
class
Proj
=
std::
identity
,
std::
indirect_unary_predicate
<
|
(6) | (since C++20) |
[
first
,
last
)
(after projecting with the projection
proj
).
[
first
,
last
)
(after projecting with the projection
proj
).
[
first
,
last
)
(after projecting with the projection
proj
).
The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup .
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Parameters
first, last | - | the range of the elements to examine |
r | - | the range of the elements to examine |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
i
in the range,
false
otherwise. Returns
true
if the range is empty.
i
in the range,
false
otherwise. Returns
false
if the range is empty.
i
in the range,
false
otherwise. Returns
true
if the range is empty.
See also Notes below.
Complexity
At most last - first applications of the predicate and the projection.
Possible implementation
all_of (1,2) |
---|
struct all_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if_not(first, last, std::ref(pred), std::ref(proj)) == last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr all_of_fn all_of; |
any_of (3,4) |
struct any_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) != last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr any_of_fn any_of; |
none_of (5,6) |
struct none_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) == last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr none_of_fn none_of; |
Notes
The return value represented in the form of the Truth table is:
input range contains | ||||
---|---|---|---|---|
all
true
,
none false |
some
true
,
some false |
none
true
,
all false |
none
true
,
none false (empty range) |
|
1,2) all_of | true | false | false | true |
3,4) any_of | true | true | false | false |
5,6) none_of | false | false | true | true |
Example
#include <algorithm> #include <functional> #include <iostream> #include <iterator> #include <numeric> #include <vector> namespace ranges = std::ranges; constexpr bool some_of(auto&& r, auto&& pred) // some but not all { return not (ranges::all_of(r, pred) or ranges::none_of(r, pred)); } constexpr auto w = {1, 2, 3}; static_assert(!some_of(w, [](int x) { return x < 1; })); static_assert( some_of(w, [](int x) { return x < 2; })); static_assert(!some_of(w, [](int x) { return x < 4; })); int main() { std::vector<int> v(10, 2); std::partial_sum(v.cbegin(), v.cend(), v.begin()); std::cout << "Among the numbers: "; ranges::copy(v, std::ostream_iterator<int>(std::cout, " ")); std::cout << '\n'; if (ranges::all_of(v.cbegin(), v.cend(), [](int i) { return i % 2 == 0; })) std::cout << "All numbers are even\n"; if (ranges::none_of(v, std::bind(std::modulus<int>(), std::placeholders::_1, 2))) std::cout << "None of them are odd\n"; auto DivisibleBy = [](int d) { return [d](int m) { return m % d == 0; }; }; if (ranges::any_of(v, DivisibleBy(7))) std::cout << "At least one number is divisible by 7\n"; }
Output:
Among the numbers: 2 4 6 8 10 12 14 16 18 20 All numbers are even None of them are odd At least one number is divisible by 7
See also
(C++11)
(C++11)
(C++11)
|
checks if a predicate is
true
for all, any or none of the elements in a range
(function template) |