std::ranges:: push_heap

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: random_access_iterator I, std:: sentinel_for < I > S,

class Comp = ranges:: less , class Proj = std:: identity >
requires std:: sortable < I, Comp, Proj >

constexpr I push_heap ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (since C++20)
template < ranges:: random_access_range R,

class Comp = ranges:: less , class Proj = std:: identity >
requires std:: sortable < ranges:: iterator_t < R > , Comp, Proj >
constexpr ranges:: borrowed_iterator_t < R >

push_heap ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (since C++20)

Inserts the last element in the specified range into a heap with respect to comp and proj , where the heap consists of all elements in the range except the last. The heap after the insertion will be the entire range.

1) The specified range is [ first , last ) .
2) The specified range is r .

If the specified range (excluding the last element) is not a heap with respect to comp and proj , the behavior is undefined.

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the iterator and sentinel designating the range of elements to modify
r - the range of elements to modify
comp - comparator to apply to the projected elements
proj - projection to apply to the elements

Return value

1) last

Complexity

At most log(N) applications of comp and 2log(N) applications of proj , where N is:

1) ranges:: distance ( first, last )

Possible implementation

struct push_heap_fn
{
    template<std::random_access_iterator I, std::sentinel_for<I> S,
             class Comp = ranges::less, class Proj = std::identity>
    requires std::sortable<I, Comp, Proj>
    constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const
    {
        const auto n{ranges::distance(first, last)};
        const auto length{n};
        if (n > 1)
        {
            I last{first + n};
            n = (n - 2) / 2;
            I i{first + n};
            if (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *--last)))
            {
                std::iter_value_t<I> v {ranges::iter_move(last)};
                do
                {
                    *last = ranges::iter_move(i);
                    last = i;
                    if (n == 0)
                        break;
                    n = (n - 1) / 2;
                    i = first + n;
                }
                while (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, v)));
                *last = std::move(v);
            }
        }
        return first + length;
    }
 
    template<ranges::random_access_range R,
             class Comp = ranges::less, class Proj = std::identity>
    requires std::sortable<ranges::iterator_t<R>, Comp, Proj>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj));
    }
};
 
inline constexpr push_heap_fn push_heap{};

Example

#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
 
void out(const auto& what, int n = 1)
{
    while (n-- > 0)
        std::cout << what;
}
 
void print(auto rem, auto const& v)
{
    out(rem);
    for (auto e : v)
        out(e), out(' ');
    out('\n');
}
 
void draw_heap(auto const& v)
{
    auto bails = [](int n, int w)
    {
        auto b = [](int w) { out("┌"), out("─", w), out("┴"), out("─", w), out("┐"); };
        if (!(n /= 2))
            return;
        for (out(' ', w); n-- > 0;)
            b(w), out(' ', w + w + 1);
        out('\n');
    };
 
    auto data = [](int n, int w, auto& first, auto last)
    {
        for (out(' ', w); n-- > 0 && first != last; ++first)
            out(*first), out(' ', w + w + 1);
        out('\n');
    };
 
    auto tier = [&](int t, int m, auto& first, auto last)
    {
        const int n{1 << t};
        const int w{(1 << (m - t - 1)) - 1};
        bails(n, w), data(n, w, first, last);
    };
 
    const int m{static_cast<int>(std::ceil(std::log2(1 + v.size())))};
    auto first{v.cbegin()};
    for (int i{}; i != m; ++i)
        tier(i, m, first, v.cend());
}
 
int main()
{
    std::vector<int> v{1, 6, 1, 8, 0, 3,};
    print("source vector v: ", v);
 
    std::ranges::make_heap(v);
    print("after make_heap: ", v);
    draw_heap(v);
 
    v.push_back(9);
 
    print("before push_heap: ", v);
    draw_heap(v);
 
    std::ranges::push_heap(v);
    print("after push_heap: ", v);
    draw_heap(v);
}

Output:

source vector v: 1 6 1 8 0 3
after make_heap: 8 6 3 1 0 1
   8
 ┌─┴─┐
 6   3
┌┴┐ ┌┴┐
1 0 1
before push_heap: 8 6 3 1 0 1 9
   8
 ┌─┴─┐
 6   3
┌┴┐ ┌┴┐
1 0 1 9
after push_heap: 9 6 8 1 0 1 3
   9
 ┌─┴─┐
 6   8
┌┴┐ ┌┴┐
1 0 1 3

See also

checks if the given range is a max heap
(algorithm function object)
finds the largest subrange that is a max heap
(algorithm function object)
creates a max heap out of a range of elements
(algorithm function object)
removes the largest element from a max heap
(algorithm function object)
turns a max heap into a range of elements sorted in ascending order
(algorithm function object)
adds an element to a max heap
(function template)