std::ranges:: partition_copy, std::ranges:: partition_copy_result

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: input_iterator I, std:: sentinel_for < I > S,

std:: weakly_incrementable O1, std:: weakly_incrementable O2,
class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_copyable < I, O1 > &&
std:: indirectly_copyable < I, O2 >
constexpr partition_copy_result < I, O1, O2 >
partition_copy ( I first, S last, O1 out_true, O2 out_false,

Pred pred, Proj proj = { } ) ;
(1) (since C++20)
template < ranges:: input_range R,

std:: weakly_incrementable O1, std:: weakly_incrementable O2,
class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < iterator_t < R > , Proj >> Pred >
requires std:: indirectly_copyable < ranges:: iterator_t < R > , O1 > &&
std:: indirectly_copyable < ranges:: iterator_t < R > , O2 >
constexpr partition_copy_result < ranges:: borrowed_iterator_t < R > , O1, O2 >
partition_copy ( R && r, O1 out_true, O2 out_false,

Pred pred, Proj proj = { } ) ;
(2) (since C++20)
Helper types
template < class I, class O1, class O2 >
using partition_copy_result = ranges:: in_out_out_result < I, O1, O2 > ;
(3) (since C++20)
1) Copies the elements from the input range [ first , last ) to two different output ranges depending on the value returned by the predicate pred . The elements that satisfy the predicate pred after projection by proj are copied to the range beginning at out_true . The rest of the elements are copied to the range beginning at out_false . The behavior is undefined if the input range overlaps either of the output ranges.
2) Same as (1) , but uses r as the source range, as if using ranges:: begin ( r ) as first , and ranges:: end ( r ) as last .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the input range of elements to copy from
r - the input range of elements to copy from
out_true - the beginning of the output range for the elements that satisfy pred
out_false - the beginning of the output range for the elements that do not satisfy pred
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

{ last, o1, o2 } , where o1 and o2 are the ends of the output ranges respectively, after the copying is complete.

Complexity

Exactly ranges:: distance ( first, last ) applications of the corresponding predicate comp and any projection proj .

Possible implementation

struct partition_copy_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             std::weakly_incrementable O1, std::weakly_incrementable O2,
             class Proj = std::identity, std::indirect_unary_predicate<
             std::projected<I, Proj>> Pred>
    requires std::indirectly_copyable<I, O1> && std::indirectly_copyable<I, O2>
    constexpr ranges::partition_copy_result<I, O1, O2>
        operator()(I first, S last, O1 out_true, O2 out_false,
                   Pred pred, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (!!std::invoke(pred, std::invoke(proj, *first)))
                *out_true = *first, ++out_true;
            else
                *out_false = *first, ++out_false;
        return {std::move(first), std::move(out_true), std::move(out_false)};
    }
 
    template<ranges::input_range R,
             std::weakly_incrementable O1, std::weakly_incrementable O2,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<iterator_t<R>, Proj>> Pred>
    requires std::indirectly_copyable<ranges::iterator_t<R>, O1> &&
             std::indirectly_copyable<ranges::iterator_t<R>, O2>
    constexpr ranges::partition_copy_result<ranges::borrowed_iterator_t<R>, O1, O2>
        operator()(R&& r, O1 out_true, O2 out_false, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(out_true),
                       std::move(out_false), std::move(pred), std::move(proj));
    }
};
 
inline constexpr partition_copy_fn partition_copy {};

Example

#include <algorithm>
#include <cctype>
#include <iostream>
#include <iterator>
#include <vector>
 
int main()
{
    const auto in = {'N', '3', 'U', 'M', '1', 'B', '4', 'E', '1', '5', 'R', '9'};
 
    std::vector<int> o1(size(in)), o2(size(in));
 
    auto pred = [](char c) { return std::isalpha(c); };
 
    auto ret = std::ranges::partition_copy(in, o1.begin(), o2.begin(), pred);
 
    std::ostream_iterator<char> cout {std::cout, " "};
    std::cout << "in = ";
    std::ranges::copy(in, cout);
    std::cout << "\no1 = ";
    std::copy(o1.begin(), ret.out1, cout);
    std::cout << "\no2 = ";
    std::copy(o2.begin(), ret.out2, cout);
    std::cout << '\n';
}

Output:

in = N 3 U M 1 B 4 E 1 5 R 9
o1 = N U M B E R
o2 = 3 1 4 1 5 9

See also

divides a range of elements into two groups
(algorithm function object)
divides elements into two groups while preserving their relative order
(algorithm function object)
copies a range of elements to a new location
(algorithm function object)
copies a range of elements omitting those that satisfy specific criteria
(algorithm function object)
copies a range dividing the elements into two groups
(function template)