std::ranges:: pop_heap

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std:: random_access_iterator I, std:: sentinel_for < I > S,

class Comp = ranges:: less , class Proj = std:: identity >
requires std:: sortable < I, Comp, Proj >

constexpr I pop_heap ( I first, S last, Comp comp = { } , Proj proj = { } ) ;
(1) (since C++20)
template < ranges:: random_access_range R,

class Comp = ranges:: less , class Proj = std:: identity >
requires std:: sortable < ranges:: iterator_t < R > , Comp, Proj >
constexpr ranges:: borrowed_iterator_t < R >

pop_heap ( R && r, Comp comp = { } , Proj proj = { } ) ;
(2) (since C++20)

Swaps the first element and the last element of the specified heap with respect to comp and proj and makes the subrange excluding the first position into a heap with respect to comp and proj . This has the effect of removing the first element from the specified heap.

1) The specified heap is [ first , last ) .
2) The specified heap is r .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - the iterator and sentinel designating the range of elements to modify
r - the range of elements to modify
comp - comparator to apply to the projected elements
proj - projection to apply to the elements

Return value

1) last

Complexity

At most 2log(N) applications of comp and 4log(N) applications of proj , where N is:

1) ranges:: distance ( first, last )

Example

#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
#include <string_view>
 
template<class I = int*>
void print(std::string_view rem, I first = {}, I last = {},
           std::string_view term = "\n")
{
    for (std::cout << rem; first != last; ++first)
        std::cout << *first << ' ';
    std::cout << term;
}
 
int main()
{
    std::array v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3};
    print("initially, v: ", v.cbegin(), v.cend());
 
    std::ranges::make_heap(v);
    print("make_heap, v: ", v.cbegin(), v.cend());
 
    print("convert heap into sorted array:");
    for (auto n {std::ssize(v)}; n >= 0; --n)
    {
        std::ranges::pop_heap(v.begin(), v.begin() + n);
        print("[ ", v.cbegin(), v.cbegin() + n, "]  ");
        print("[ ", v.cbegin() + n, v.cend(), "]\n");
    }
}

Output:

initially, v: 3 1 4 1 5 9 2 6 5 3
make_heap, v: 9 6 4 5 5 3 2 1 1 3
convert heap into sorted array:
[ 6 5 4 3 5 3 2 1 1 9 ]  [ ]
[ 5 5 4 3 1 3 2 1 6 ]  [ 9 ]
[ 5 3 4 1 1 3 2 5 ]  [ 6 9 ]
[ 4 3 3 1 1 2 5 ]  [ 5 6 9 ]
[ 3 2 3 1 1 4 ]  [ 5 5 6 9 ]
[ 3 2 1 1 3 ]  [ 4 5 5 6 9 ]
[ 2 1 1 3 ]  [ 3 4 5 5 6 9 ]
[ 1 1 2 ]  [ 3 3 4 5 5 6 9 ]
[ 1 1 ]  [ 2 3 3 4 5 5 6 9 ]
[ 1 ]  [ 1 2 3 3 4 5 5 6 9 ]
[ ]  [ 1 1 2 3 3 4 5 5 6 9 ]

See also

adds an element to a max heap
(algorithm function object)
checks if the given range is a max heap
(algorithm function object)
finds the largest subrange that is a max heap
(algorithm function object)
creates a max heap out of a range of elements
(algorithm function object)
turns a max heap into a range of elements sorted in ascending order
(algorithm function object)
removes the largest element from a max heap
(function template)