std::ranges:: lower_bound

From cppreference.com
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
(1)
template < std:: forward_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity ,
std:: indirect_strict_weak_order
< const T * , std :: projected < I, Proj >> Comp = ranges:: less >
constexpr I lower_bound ( I first, S last, const T & value,

Comp comp = { } , Proj proj = { } ) ;
(since C++20)
(until C++26)
template < std:: forward_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > ,
std:: indirect_strict_weak_order
< const T * , std :: projected < I, Proj >> Comp = ranges:: less >
constexpr I lower_bound ( I first, S last, const T & value,

Comp comp = { } , Proj proj = { } ) ;
(since C++26)
(2)
template < ranges:: forward_range R,

class T, class Proj = std:: identity ,
std:: indirect_strict_weak_order
< const T * , std :: projected < ranges:: iterator_t < R > ,
Proj >> Comp = ranges:: less >
constexpr ranges:: borrowed_iterator_t < R >

lower_bound ( R && r, const T & value, Comp comp = { } , Proj proj = { } ) ;
(since C++20)
(until C++26)
template < ranges:: forward_range R,

class Proj = std:: identity ,
class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj >
std:: indirect_strict_weak_order
< const T * , std :: projected < ranges:: iterator_t < R > ,
Proj >> Comp = ranges:: less >
constexpr ranges:: borrowed_iterator_t < R >

lower_bound ( R && r, const T & value, Comp comp = { } , Proj proj = { } ) ;
(since C++26)
1) Returns an iterator pointing to the first element in the range [ first , last ) that is not less than (i.e. greater or equal to) value , or last if no such element is found. The range [ first , last ) must be partitioned with respect to the expression std:: invoke ( comp, std:: invoke ( proj, element ) , value ) , i.e., all elements for which the expression is true must precede all elements for which the expression is false . A fully-sorted range meets this criterion.
2) Same as (1) , but uses r as the source range, as if using ranges:: begin ( r ) as first and ranges:: end ( r ) as last .

The function-like entities described on this page are algorithm function objects (informally known as niebloids ), that is:

Parameters

first, last - iterator-sentinel pair defining the partially-ordered range to examine
r - the partially-ordered range to examine
value - value to compare the projected elements to
comp - comparison predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

Iterator pointing to the first element that is not less than value , or last if no such element is found.

Complexity

The number of comparisons and applications of the projection performed are logarithmic in the distance between first and last (at most log 2 (last - first) + O(1) comparisons and applications of the projection). However, for an iterator that does not model random_access_iterator , the number of iterator increments is linear.

Notes

On a range that's fully sorted (or more generally, partially ordered with respect to value ) after projection, std::ranges::lower_bound implements the binary search algorithm. Therefore, std::ranges::binary_search can be implemented in terms of it.

Feature-test macro Value Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for algorithms ( 1,2 )

Possible implementation

struct lower_bound_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             class T = std::projected_value_t<I, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<I, Proj>> Comp = ranges::less>
    constexpr I operator()(I first, S last, const T& value,
                           Comp comp = {}, Proj proj = {}) const
    {
        I it;
        std::iter_difference_t<I> count, step;
        count = std::ranges::distance(first, last);
 
        while (count > 0)
        {
            it = first;
            step = count / 2;
            ranges::advance(it, step, last);
            if (comp(std::invoke(proj, *it), value))
            {
                first = ++it;
                count -= step + 1;
            }
            else
                count = step;
        }
        return first;
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value,
                       std::ref(comp), std::ref(proj));
    }
};
 
inline constexpr lower_bound_fn lower_bound;

Example

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <iterator>
#include <vector>
 
namespace ranges = std::ranges;
 
template<std::forward_iterator I, std::sentinel_for<I> S, class T,
         class Proj = std::identity,
         std::indirect_strict_weak_order
             <const T*, std::projected<I, Proj>> Comp = ranges::less>
constexpr I binary_find(I first, S last, const T& value, Comp comp = {}, Proj proj = {})
{
    first = ranges::lower_bound(first, last, value, comp, proj);
    return first != last && !comp(value, proj(*first)) ? first : last;
}
 
int main()
{
    std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
    //                                 ^^^^^^^^^^
    auto lower = ranges::lower_bound(data, 4);
    auto upper = ranges::upper_bound(data, 4);
 
    std::cout << "found a range [" << ranges::distance(data.cbegin(), lower)
              << ", " << ranges::distance(data.cbegin(), upper) << ") = { ";
    ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
    std::cout << "}\n";
 
    // classic binary search, returning a value only if it is present
 
    data = {1, 2, 4, 8, 16};
    //               ^
    auto it = binary_find(data.cbegin(), data.cend(), 8); // '5' would return end()
 
    if (it != data.cend())
        std::cout << *it << " found at index "<< ranges::distance(data.cbegin(), it);
 
    using CD = std::complex<double>;
    std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}};
    auto cmpz = [](CD x, CD y) { return x.real() < y.real(); };
    #ifdef __cpp_lib_algorithm_default_value_type
        auto it2 = ranges::lower_bound(nums, {2, 0}, cmpz);
    #else
        auto it2 = ranges::lower_bound(nums, CD{2, 0}, cmpz);
    #endif
    assert((*it2 == CD{2, 2}));
}

Output:

found a range [6, 10) = { 4 4 4 4 }
8 found at index 3

See also

returns range of elements matching a specific key
(algorithm function object)
divides a range of elements into two groups
(algorithm function object)
locates the partition point of a partitioned range
(algorithm function object)
returns an iterator to the first element greater than a certain value
(algorithm function object)
returns an iterator to the first element not less than the given value
(function template)