std:: lerp
Defined in header
<cmath>
|
||
(1) | ||
constexpr
float
lerp
(
float
a,
float
b,
float
t
)
noexcept
;
constexpr
double
lerp
(
double
a,
double
b,
double
t
)
noexcept
;
|
(since C++20)
(until C++23) |
|
constexpr
/* floating-point-type */
lerp
(
/* floating-point-type */
a,
|
(since C++23) | |
Defined in header
<cmath>
|
||
template
<
class
Arithmetic1,
class
Arithmetic2,
class
Arithmetic3
>
constexpr
/* common-floating-point-type */
|
(A) | (since C++20) |
[
0
,
1
)
(the
linear extrapolation
otherwise), i.e. the result of
a+t(b−a)
with accounting for floating-point calculation imprecision.
The library provides overloads for all cv-unqualified floating-point types as the type of the parameters
a
,
b
and
t
.
(since C++23)
Parameters
a, b, t | - | floating-point or integer values |
Return value
a + t(b − a)
When std:: isfinite ( a ) && std:: isfinite ( b ) is true , the following properties are guaranteed:
- If t == 0 , the result is equal to a .
- If t == 1 , the result is equal to b .
- If t >= 0 && t <= 1 , the result is finite.
- If std:: isfinite ( t ) && a == b , the result is equal to a .
- If std:: isfinite ( t ) || ( b - a ! = 0 && std:: isinf ( t ) ) , the result is not NaN .
Let CMP ( x, y ) be 1 if x > y , - 1 if x < y , and 0 otherwise. For any t1 and t2 , the product of
- CMP ( std :: lerp ( a, b, t2 ) , std :: lerp ( a, b, t1 ) ) ,
- CMP ( t2, t1 ) , and
- CMP ( b, a )
is non-negative. (That is,
std::lerp
is monotonic.)
Notes
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their first argument num1 , second argument num2 and third argument num3 :
|
(until C++23) |
If
num1
,
num2
and
num3
have arithmetic types, then
std
::
lerp
(
num1, num2, num3
)
has the same effect as
std
::
lerp
(
static_cast
<
/* common-floating-point-type */
>
(
num1
)
,
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_interpolate
|
201902L | (C++20) |
std::lerp
,
std::midpoint
|
Example
#include <cassert> #include <cmath> #include <iostream> float naive_lerp(float a, float b, float t) { return a + t * (b - a); } int main() { std::cout << std::boolalpha; const float a = 1e8f, b = 1.0f; const float midpoint = std::lerp(a, b, 0.5f); std::cout << "a = " << a << ", " << "b = " << b << '\n' << "midpoint = " << midpoint << '\n'; std::cout << "std::lerp is exact: " << (a == std::lerp(a, b, 0.0f)) << ' ' << (b == std::lerp(a, b, 1.0f)) << '\n'; std::cout << "naive_lerp is exact: " << (a == naive_lerp(a, b, 0.0f)) << ' ' << (b == naive_lerp(a, b, 1.0f)) << '\n'; std::cout << "std::lerp(a, b, 1.0f) = " << std::lerp(a, b, 1.0f) << '\n' << "naive_lerp(a, b, 1.0f) = " << naive_lerp(a, b, 1.0f) << '\n'; assert(not std::isnan(std::lerp(a, b, INFINITY))); // lerp here can be -inf std::cout << "Extrapolation demo, given std::lerp(5, 10, t):\n"; for (auto t{-2.0}; t <= 2.0; t += 0.5) std::cout << std::lerp(5.0, 10.0, t) << ' '; std::cout << '\n'; }
Possible output:
a = 1e+08, b = 1 midpoint = 5e+07 std::lerp is exact?: true true naive_lerp is exact?: true false std::lerp(a, b, 1.0f) = 1 naive_lerp(a, b, 1.0f) = 0 Extrapolation demo, given std::lerp(5, 10, t): -5 -2.5 0 2.5 5 7.5 10 12.5 15
See also
(C++20)
|
midpoint between two numbers or pointers
(function template) |