std:: lerp

From cppreference.com
Defined in header <cmath>
(1)
constexpr float lerp ( float a, float b, float t ) noexcept ;

constexpr double lerp ( double a, double b, double t ) noexcept ;
constexpr long double lerp ( long double a, long double b,

long double t ) noexcept ;
(since C++20)
(until C++23)
constexpr /* floating-point-type */

lerp ( /* floating-point-type */ a,
/* floating-point-type */ b,

/* floating-point-type */ t ) noexcept ;
(since C++23)
Defined in header <cmath>
template < class Arithmetic1, class Arithmetic2, class Arithmetic3 >

constexpr /* common-floating-point-type */

lerp ( Arithmetic1 a, Arithmetic2 b, Arithmetic3 t ) noexcept ;
(A) (since C++20)
1) Computes the linear interpolation between a and b , if the parameter t is inside [ 0 , 1 ) (the linear extrapolation otherwise), i.e. the result of a+t(b−a) with accounting for floating-point calculation imprecision. The library provides overloads for all cv-unqualified floating-point types as the type of the parameters a , b and t . (since C++23)
A) Additional overloads are provided for all other combinations of arithmetic types.

Parameters

a, b, t - floating-point or integer values

Return value

a + t(b − a)

When std:: isfinite ( a ) && std:: isfinite ( b ) is true , the following properties are guaranteed:

  • If t == 0 , the result is equal to a .
  • If t == 1 , the result is equal to b .
  • If t >= 0 && t <= 1 , the result is finite.
  • If std:: isfinite ( t ) && a == b , the result is equal to a .
  • If std:: isfinite ( t ) || ( b - a ! = 0 && std:: isinf ( t ) ) , the result is not NaN .

Let CMP ( x, y ) be 1 if x > y , - 1 if x < y , and 0 otherwise. For any t1 and t2 , the product of

  • CMP ( std :: lerp ( a, b, t2 ) , std :: lerp ( a, b, t1 ) ) ,
  • CMP ( t2, t1 ) , and
  • CMP ( b, a )

is non-negative. (That is, std::lerp is monotonic.)

Notes

The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their first argument num1 , second argument num2 and third argument num3 :

  • If num1 , num2 or num3 has type long double , then std :: lerp ( num1, num2, num3 ) has the same effect as std :: lerp ( static_cast < long double > ( num1 ) ,
    static_cast < long double > ( num2 ) ,
    static_cast < long double > ( num3 ) )
    .
  • Otherwise, if num1 , num2 and/or num3 has type double or an integer type, then std :: lerp ( num1, num2, num3 ) has the same effect as std :: lerp ( static_cast < double > ( num1 ) ,
    static_cast < double > ( num2 ) ,
    static_cast < double > ( num3 ) )
    .
  • Otherwise, if num1 , num2 or num3 has type float , then std :: lerp ( num1, num2, num3 ) has the same effect as std :: lerp ( static_cast < float > ( num1 ) ,
    static_cast < float > ( num2 ) ,
    static_cast < float > ( num3 ) )
    .
(until C++23)

If num1 , num2 and num3 have arithmetic types, then std :: lerp ( num1, num2, num3 ) has the same effect as std :: lerp ( static_cast < /* common-floating-point-type */ > ( num1 ) ,
static_cast < /* common-floating-point-type */ > ( num2 ) ,
static_cast < /* common-floating-point-type */ > ( num3 ) )
, where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank among the types of num1 , num2 and num3 , arguments of integer type are considered to have the same floating-point conversion rank as double .

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since C++23)
Feature-test macro Value Std Feature
__cpp_lib_interpolate 201902L (C++20) std::lerp , std::midpoint

Example

#include <cassert>
#include <cmath>
#include <iostream>
 
float naive_lerp(float a, float b, float t)
{
    return a + t * (b - a);
}
 
int main()
{
    std::cout << std::boolalpha;
 
    const float a = 1e8f, b = 1.0f;
    const float midpoint = std::lerp(a, b, 0.5f);
 
    std::cout << "a = " << a << ", " << "b = " << b << '\n'
              << "midpoint = " << midpoint << '\n';
 
    std::cout << "std::lerp is exact: "
              << (a == std::lerp(a, b, 0.0f)) << ' '
              << (b == std::lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "naive_lerp is exact: "
              << (a == naive_lerp(a, b, 0.0f)) << ' '
              << (b == naive_lerp(a, b, 1.0f)) << '\n';
 
    std::cout << "std::lerp(a, b, 1.0f) = " << std::lerp(a, b, 1.0f) << '\n'
              << "naive_lerp(a, b, 1.0f) = " << naive_lerp(a, b, 1.0f) << '\n';
 
    assert(not std::isnan(std::lerp(a, b, INFINITY))); // lerp here can be -inf
 
    std::cout << "Extrapolation demo, given std::lerp(5, 10, t):\n";
    for (auto t{-2.0}; t <= 2.0; t += 0.5)
        std::cout << std::lerp(5.0, 10.0, t) << ' ';
    std::cout << '\n';
}

Possible output:

a = 1e+08, b = 1
midpoint = 5e+07
std::lerp is exact?: true true
naive_lerp is exact?: true false
std::lerp(a, b, 1.0f) = 1
naive_lerp(a, b, 1.0f) = 0
Extrapolation demo, given std::lerp(5, 10, t):
-5 -2.5 0 2.5 5 7.5 10 12.5 15

See also

(C++20)
midpoint between two numbers or pointers
(function template)