std:: legendre, std:: legendref, std:: legendrel
double
legendre
(
unsigned
int
n,
double
x
)
;
double
legendre
(
unsigned
int
n,
float
x
)
;
|
(1) | |
double
legendre
(
unsigned
int
n, IntegralType x
)
;
|
(2) | |
As all special functions,
legendre
is only guaranteed to be available in
<cmath>
if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Parameters
n | - | the degree of the polynomial |
x | - | the argument, a value of a floating-point or integral type |
Return value
If no errors occur, value of the order-
n
unassociated Legendre polynomial of
x
, that is
1 |
2 n n! |
d n |
dx n |
Error handling
Errors may be reported as specified in math_errhandling .
- If the argument is NaN, NaN is returned and domain error is not reported.
- The function is not required to be defined for |x| > 1 .
- If n is greater or equal than 128, the behavior is implementation-defined.
Notes
Implementations that do not support TR 29124 but support TR 19768, provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also available in boost.math .
The first few Legendre polynomials are:
- legendre(0, x) = 1 .
- legendre(1, x) = x .
-
legendre(2, x) =
1 2 -
legendre(3, x) =
1 2 -
legendre(4, x) =
1 8
Example
(works as shown with gcc 6.0)
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iostream> double P3(double x) { return 0.5 * (5 * std::pow(x, 3) - 3 * x); } double P4(double x) { return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3); } int main() { // spot-checks std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n' << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n'; }
Output:
-0.335938=-0.335938 0.157715=0.157715
See also
Laguerre polynomials
(function) |
|
Hermite polynomials
(function) |
External links
Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |