std:: legendre, std:: legendref, std:: legendrel

From cppreference.com
double legendre ( unsigned int n, double x ) ;

double legendre ( unsigned int n, float x ) ;
double legendre ( unsigned int n, long double x ) ;
float legendref ( unsigned int n, float x ) ;

long double legendrel ( unsigned int n, long double x ) ;
(1)
double legendre ( unsigned int n, IntegralType x ) ;
(2)
1) Computes the unassociated Legendre polynomials of the degree n and argument x .
2) A set of overloads or a function template accepting an argument of any integral type . Equivalent to (1) after casting the argument to double .

As all special functions, legendre is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Parameters

n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type

Return value

If no errors occur, value of the order- n unassociated Legendre polynomial of x , that is
1
2 n n!
d n
dx n
(x 2 - 1) n
, is returned.

Error handling

Errors may be reported as specified in math_errhandling .

  • If the argument is NaN, NaN is returned and domain error is not reported.
  • The function is not required to be defined for |x| > 1 .
  • If n is greater or equal than 128, the behavior is implementation-defined.

Notes

Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1 .

An implementation of this function is also available in boost.math .

The first few Legendre polynomials are:

  • legendre(0, x) = 1 .
  • legendre(1, x) = x .
  • legendre(2, x) =
    1
    2
    (3x 2 - 1)
    .
  • legendre(3, x) =
    1
    2
    (5x 3 - 3x)
    .
  • legendre(4, x) =
    1
    8
    (35x 4 - 30x 2 + 3)
    .

Example

(works as shown with gcc 6.0)

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
 
double P3(double x)
{
    return 0.5 * (5 * std::pow(x, 3) - 3 * x);
}
 
double P4(double x)
{
    return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3);
}
 
int main()
{
    // spot-checks
    std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n'
              << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n';
}

Output:

-0.335938=-0.335938
0.157715=0.157715

See also

Laguerre polynomials
(function)
Hermite polynomials
(function)

External links

Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource.