std:: beta, std:: betaf, std:: betal
double
beta
(
double
x,
double
y
)
;
float
betaf
(
float
x,
float
y
)
;
|
(1) | |
Promoted beta
(
Arithmetic x, Arithmetic y
)
;
|
(2) | |
Promoted
is also
long
double
, otherwise the return type is always
double
.
As all special functions,
beta
is only guaranteed to be available in
<cmath>
if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Parameters
x, y | - | values of a floating-point or integral type |
Return value
If no errors occur, value of the beta function of x and y , that is ∫ 10 t x-1 (1 - t) (y-1) d t , or, equivalently,Γ(x)Γ(y) |
Γ(x + y) |
Error handling
Errors may be reported as specified in math_errhandling .
- If any argument is NaN, NaN is returned and domain error is not reported.
- The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.
Notes
Implementations that do not support TR 29124 but support TR 19768, provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also available in boost.math .
beta ( x, y ) equals beta ( y, x ) .
When x and y are positive integers, beta(x, y) equals(x - 1)!(y - 1)! |
(x + y - 1)! |
⎜
⎝ n
k ⎞
⎟
⎠ =
1 |
(n + 1)Β(n - k + 1, k + 1) |
Example
(works as shown with gcc 6.0)
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iomanip> #include <iostream> #include <string> double binom(int n, int k) { return 1 / ((n + 1) * std::beta(n - k + 1, k + 1)); } int main() { std::cout << "Pascal's triangle:\n"; for (int n = 1; n < 10; ++n) { std::cout << std::string(20 - n * 2, ' '); for (int k = 1; k < n; ++k) std::cout << std::setw(3) << binom(n, k) << ' '; std::cout << '\n'; } }
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9
See also
(C++11)
(C++11)
(C++11)
|
gamma function
(function) |
External links
Weisstein, Eric W. "Beta Function." From MathWorld--A Wolfram Web Resource.