std:: beta, std:: betaf, std:: betal
Defined in header
<cmath>
|
||
(1) | ||
float
beta
(
float
x,
float
y
)
;
double
beta
(
double
x,
double
y
)
;
|
(since C++17)
(until C++23) |
|
/* floating-point-type */
beta
(
/* floating-point-type */
x,
/* floating-point-type */ y ) ; |
(since C++23) | |
float
betaf
(
float
x,
float
y
)
;
|
(2) | (since C++17) |
long
double
betal
(
long
double
x,
long
double
y
)
;
|
(3) | (since C++17) |
Defined in header
<cmath>
|
||
template
<
class
Arithmetic1,
class
Arithmetic2
>
/* common-floating-point-type */ beta ( Arithmetic1 x, Arithmetic2 y ) ; |
(A) | (since C++17) |
std::beta
for all cv-unqualified floating-point types as the type of the parameters
x
and
y
.
(since C++23)
Parameters
x, y | - | floating-point or integer values |
Return value
If no errors occur, value of the beta function of x and y , that is ∫ 10 t x-1 (1-t) (y-1) d t , or, equivalently,Γ(x)Γ(y) |
Γ(x+y) |
Error handling
Errors may be reported as specified in math_errhandling .
- If any argument is NaN, NaN is returned and domain error is not reported.
- The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.
Notes
Implementations that do not support C++17, but support
ISO 29124:2010
, provide this function if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also available in boost.math .
std :: beta ( x, y ) equals std :: beta ( y, x ) .
When x and y are positive integers, std :: beta ( x, y ) equals(x-1)!(y-1)! |
(x+y-1)! |
⎜
⎝ n
k ⎞
⎟
⎠ =
1 |
(n+1)Β(n-k+1,k+1) |
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their first argument num1 and second argument num2 :
|
(until C++23) |
If
num1
and
num2
have arithmetic types, then
std
::
beta
(
num1, num2
)
has the same effect as
std
::
beta
(
static_cast
<
/* common-floating-point-type */
>
(
num1
)
,
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
Example
#include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <numbers> #include <string> long binom_via_beta(int n, int k) { return std::lround(1 / ((n + 1) * std::beta(n - k + 1, k + 1))); } long binom_via_gamma(int n, int k) { return std::lround(std::tgamma(n + 1) / (std::tgamma(n - k + 1) * std::tgamma(k + 1))); } int main() { std::cout << "Pascal's triangle:\n"; for (int n = 1; n < 10; ++n) { std::cout << std::string(20 - n * 2, ' '); for (int k = 1; k < n; ++k) { std::cout << std::setw(3) << binom_via_beta(n, k) << ' '; assert(binom_via_beta(n, k) == binom_via_gamma(n, k)); } std::cout << '\n'; } // A spot-check const long double p = 0.123; // a random value in [0, 1] const long double q = 1 - p; const long double π = std::numbers::pi_v<long double>; std::cout << "\n\n" << std::setprecision(19) << "β(p,1-p) = " << std::beta(p, q) << '\n' << "π/sin(π*p) = " << π / std::sin(π * p) << '\n'; }
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9 β(p,1-p) = 8.335989149587307836 π/sin(π*p) = 8.335989149587307834
See also
(C++11)
(C++11)
(C++11)
|
gamma function
(function) |
External links
Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource. |