std:: sph_bessel, std:: sph_besself, std:: sph_bessell
Defined in header
<cmath>
|
||
(1) | ||
float
sph_bessel
(
unsigned
int
n,
float
x
)
;
double
sph_bessel
(
unsigned
int
n,
double
x
)
;
|
(since C++17)
(until C++23) |
|
/* floating-point-type */
sph_bessel
(
unsigned
int
n,
/* floating-point-type */ x ) ; |
(since C++23) | |
float
sph_besself
(
unsigned
int
n,
float
x
)
;
|
(2) | (since C++17) |
long
double
sph_bessell
(
unsigned
int
n,
long
double
x
)
;
|
(3) | (since C++17) |
Defined in header
<cmath>
|
||
template
<
class
Integer
>
double sph_bessel ( unsigned int n, Integer x ) ; |
(A) | (since C++17) |
std::sph_bessel
for all cv-unqualified floating-point types as the type of the parameter
x
.
(since C++23)
Parameters
n | - | the order of the function |
x | - | the argument of the function |
Return value
If no errors occur, returns the value of the spherical Bessel function of the first kind of n and x , that is j n (x) = (π/2x) 1/2 J n+1/2 (x) where J n (x) is std:: cyl_bessel_j ( n, x ) and x≥0 .
Error handling
Errors may be reported as specified in math_errhandling .
- If the argument is NaN, NaN is returned and domain error is not reported.
- If n≥128 , the behavior is implementation-defined.
Notes
Implementations that do not support C++17, but support
ISO 29124:2010
, provide this function if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also available in boost.math .
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their argument num of integer type, std :: sph_bessel ( int_num, num ) has the same effect as std :: sph_bessel ( int_num, static_cast < double > ( num ) ) .
Example
Output:
j_1(1.2345) = 0.352106 sin(x)/x² - cos(x)/x = 0.352106
See also
(C++17)
(C++17)
(C++17)
|
cylindrical Bessel functions (of the first kind)
(function) |
(C++17)
(C++17)
(C++17)
|
spherical Neumann functions
(function) |
External links
Weisstein, Eric W. "Spherical Bessel Function of the First Kind." From MathWorld — A Wolfram Web Resource. |