std:: cyl_neumann, std:: cyl_neumannf, std:: cyl_neumannl
Defined in header
<cmath>
|
||
(1) | ||
float
cyl_neumann
(
float
nu,
float
x
)
;
double
cyl_neumann
(
double
nu,
double
x
)
;
|
(since C++17)
(until C++23) |
|
/* floating-point-type */
cyl_neumann
(
/* floating-point-type */
nu,
/* floating-point-type */ x ) ; |
(since C++23) | |
float
cyl_neumannf
(
float
nu,
float
x
)
;
|
(2) | (since C++17) |
long
double
cyl_neumannl
(
long
double
nu,
long
double
x
)
;
|
(3) | (since C++17) |
Defined in header
<cmath>
|
||
template
<
class
Arithmetic1,
class
Arithmetic2
>
/* common-floating-point-type */
|
(A) | (since C++17) |
std::cyl_neumann
for all cv-unqualified floating-point types as the type of the parameters
nu
and
x
.
(since C++23)
Parameters
nu | - | the order of the function |
x | - | the argument of the function |
Return value
If no errors occur, value of the cylindrical Neumann function (Bessel function of the second kind) of
nu
and
x
, is returned, that is
N
nu
(x) =
J nu (x)cos(nuπ)-J -nu (x) |
sin(nuπ) |
Error handling
Errors may be reported as specified in math_errhandling :
- If the argument is NaN, NaN is returned and domain error is not reported.
- If nu≥128 , the behavior is implementation-defined.
Notes
Implementations that do not support C++17, but support
ISO 29124:2010
, provide this function if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also available in boost.math .
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their first argument num1 and second argument num2 :
|
(until C++23) |
If
num1
and
num2
have arithmetic types, then
std
::
cyl_neumann
(
num1, num2
)
has the same effect as
std
::
cyl_neumann
(
static_cast
<
/* common-floating-point-type */
>
(
num1
)
,
If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
Example
#include <cassert> #include <cmath> #include <iostream> #include <numbers> const double π = std::numbers::pi; // or std::acos(-1) in pre C++20 // To calculate the cylindrical Neumann function via cylindrical Bessel function of the // first kind we have to implement J, because the direct invocation of the // std::cyl_bessel_j(nu, x), per formula above, // for negative nu raises 'std::domain_error': Bad argument in __cyl_bessel_j. double J_neg(double nu, double x) { return std::cos(-nu * π) * std::cyl_bessel_j(-nu, x) -std::sin(-nu * π) * std::cyl_neumann(-nu, x); } double J_pos(double nu, double x) { return std::cyl_bessel_j(nu, x); } double J(double nu, double x) { return nu < 0.0 ? J_neg(nu, x) : J_pos(nu, x); } int main() { std::cout << "spot checks for nu == 0.5\n" << std::fixed << std::showpos; const double nu = 0.5; for (double x = 0.0; x <= 2.0; x += 0.333) { const double n = std::cyl_neumann(nu, x); const double j = (J(nu, x) * std::cos(nu * π) - J(-nu, x)) / std::sin(nu * π); std::cout << "N_.5(" << x << ") = " << n << ", calculated via J = " << j << '\n'; assert(n == j); } }
Output:
spot checks for nu == 0.5 N_.5(+0.000000) = -inf, calculated via J = -inf N_.5(+0.333000) = -1.306713, calculated via J = -1.306713 N_.5(+0.666000) = -0.768760, calculated via J = -0.768760 N_.5(+0.999000) = -0.431986, calculated via J = -0.431986 N_.5(+1.332000) = -0.163524, calculated via J = -0.163524 N_.5(+1.665000) = +0.058165, calculated via J = +0.058165 N_.5(+1.998000) = +0.233876, calculated via J = +0.233876
See also
(C++17)
(C++17)
(C++17)
|
regular modified cylindrical Bessel functions
(function) |
(C++17)
(C++17)
(C++17)
|
cylindrical Bessel functions (of the first kind)
(function) |
(C++17)
(C++17)
(C++17)
|
irregular modified cylindrical Bessel functions
(function) |
External links
Weisstein, Eric W. "Bessel Function of the Second Kind." From MathWorld — A Wolfram Web Resource. |