std:: assoc_laguerre, std:: assoc_laguerref, std:: assoc_laguerrel

From cppreference.com
Defined in header <cmath>
(1)
float assoc_laguerre ( unsigned int n, unsigned int m, float x ) ;

double assoc_laguerre ( unsigned int n, unsigned int m, double x ) ;

long double assoc_laguerre ( unsigned int n, unsigned int m, long double x ) ;
(since C++17)
(until C++23)
/* floating-point-type */ assoc_laguerre ( unsigned int n, unsigned int m,
/* floating-point-type */ x ) ;
(since C++23)
float assoc_laguerref ( unsigned int n, unsigned int m, float x ) ;
(2) (since C++17)
long double assoc_laguerrel ( unsigned int n, unsigned int m, long double x ) ;
(3) (since C++17)
Defined in header <cmath>
template < class Integer >
double assoc_laguerre ( unsigned int n, unsigned int m, Integer x ) ;
(A) (since C++17)
1-3) Computes the associated Laguerre polynomials of the degree n , order m , and argument x . The library provides overloads of std::assoc_laguerre for all cv-unqualified floating-point types as the type of the parameter x . (since C++23)
A) Additional overloads are provided for all integer types, which are treated as double .

Parameters

n - the degree of the polynomial, an unsigned integer value
m - the order of the polynomial, an unsigned integer value
x - the argument, a floating-point or integer value

Return value

If no errors occur, value of the associated Laguerre polynomial of x , that is (-1) m
d m
dx m
L n+m (x)
, is returned (where L n+m (x) is the unassociated Laguerre polynomial, std:: laguerre ( n + m, x ) ).

Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported
  • If x is negative, a domain error may occur
  • If n or m is greater or equal to 128, the behavior is implementation-defined

Notes

Implementations that do not support C++17, but support ISO 29124:2010 , provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1 .

An implementation of this function is also available in boost.math .

The associated Laguerre polynomials are the polynomial solutions of the equation xy ,, +(m+1-x)y , +ny = 0 .

The first few are:

Function Polynomial
assoc_laguerre ( 0 , m, x ) 1
assoc_laguerre ( 1 , m, x ) -x + m + 1
assoc_laguerre ( 2 , m, x )
1
2
[x 2 - 2(m + 2)x + (m + 1)(m + 2)]
assoc_laguerre ( 3 , m, x )
1
6
[-x 3 - 3(m + 3)x 2 - 3(m + 2)(m + 3)x + (m + 1)(m + 2)(m + 3)]

The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their argument num of integer type, std :: assoc_laguerre ( int_num1, int_num2, num ) has the same effect as std :: assoc_laguerre ( int_num1, int_num2, static_cast < double > ( num ) ) .

Example

#include <cmath>
#include <iostream>
 
double L1(unsigned m, double x)
{
    return -x + m + 1;
}
 
double L2(unsigned m, double x)
{
    return 0.5 * (x * x - 2 * (m + 2) * x + (m + 1) * (m + 2));
}
 
int main()
{
    // spot-checks
    std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' << L1(10, 0.5) << '\n'
              << std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5) << '\n';
}

Output:

10.5=10.5
60.125=60.125

See also

(C++17) (C++17) (C++17)
Laguerre polynomials
(function)

External links

Weisstein, Eric W. "Associated Laguerre Polynomial." From MathWorld — A Wolfram Web Resource.