std:: assoc_legendre, std:: assoc_legendref, std:: assoc_legendrel
Defined in header
<cmath>
|
||
(1) | ||
float
assoc_legendre
(
unsigned
int
n,
unsigned
int
m,
float
x
)
;
double
assoc_legendre
(
unsigned
int
n,
unsigned
int
m,
double
x
)
;
|
(since C++17)
(until C++23) |
|
/* floating-point-type */
assoc_legendre
(
unsigned
int
n,
unsigned
int
m,
/* floating-point-type */ x ) ; |
(since C++23) | |
float
assoc_legendref
(
unsigned
int
n,
unsigned
int
m,
float
x
)
;
|
(2) | (since C++17) |
long
double
assoc_legendrel
(
unsigned
int
n,
unsigned
int
m,
long
double
x
)
;
|
(3) | (since C++17) |
Defined in header
<cmath>
|
||
template
<
class
Integer
>
double assoc_legendre ( unsigned int n, unsigned int m, Integer x ) ; |
(A) | (since C++17) |
std::assoc_legendre
for all cv-unqualified floating-point types as the type of the parameter
x
.
(since C++23)
Parameters
n | - | the degree of the polynomial, an unsigned integer value |
m | - | the order of the polynomial, an unsigned integer value |
x | - | the argument, a floating-point or integer value |
Return value
If no errors occur, value of the associated Legendre polynomial P mn of x , that is (1-x 2 ) m/2d m |
dx m |
Note that the Condon-Shortley phase term (-1) m is omitted from this definition.
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
- If |x| > 1 , a domain error may occur
-
If
n
is greater or equal to 128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support
ISO 29124:2010
, provide this function if
__STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines
__STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header
tr1/cmath
and namespace
std::tr1
.
An implementation of this function is also
available in boost.math
as
boost::math::legendre_p
, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
Function | Polynomial | ||
---|---|---|---|
assoc_legendre ( 0 , 0 , x ) | 1 | ||
assoc_legendre ( 1 , 0 , x ) | x | ||
assoc_legendre ( 1 , 1 , x ) | (1 - x 2 ) 1/2 | ||
assoc_legendre ( 2 , 0 , x ) |
|
||
assoc_legendre ( 2 , 1 , x ) | 3x(1 - x 2 ) 1/2 | ||
assoc_legendre ( 2 , 2 , x ) | 3(1 - x 2 ) |
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their argument num of integer type, std :: assoc_legendre ( int_num1, int_num2, num ) has the same effect as std :: assoc_legendre ( int_num1, int_num2, static_cast < double > ( num ) ) .
Example
#include <cmath> #include <iostream> double P20(double x) { return 0.5 * (3 * x * x - 1); } double P21(double x) { return 3.0 * x * std::sqrt(1 - x * x); } double P22(double x) { return 3 * (1 - x * x); } int main() { // spot-checks std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n' << std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n' << std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n'; }
Output:
-0.125=-0.125 1.29904=1.29904 2.25=2.25
See also
(C++17)
(C++17)
(C++17)
|
Legendre polynomials
(function) |
External links
Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |