std:: to_array
Defined in header
<array>
|
||
template
<
class
T,
std::
size_t
N
>
constexpr std:: array < std:: remove_cv_t < T > , N > to_array ( T ( & a ) [ N ] ) ; |
(1) | (since C++20) |
template
<
class
T,
std::
size_t
N
>
constexpr std:: array < std:: remove_cv_t < T > , N > to_array ( T ( && a ) [ N ] ) ; |
(2) | (since C++20) |
Creates a
std::array
from the one dimensional built-in array
a
. Copying or moving multidimensional built-in array is not supported.
i
in
0, ..., N - 1
, copy-initializes result's correspond element with
a
[
i
]
. This overload is ill-formed when
std::
is_constructible_v
<
T, T
&
>
is
false
.
i
in
0, ..., N - 1
, move-initializes result's correspond element with
std
::
move
(
a
[
i
]
)
. This overload is ill-formed when
std::
is_move_constructible_v
<
T
>
is
false
.
Both overloads are ill-formed when std:: is_array_v < T > is true .
Parameters
a | - | the built-in array to be converted the std::array |
Type requirements | ||
-
T
must meet the requirements of
CopyConstructible
in order to use overload (1).
|
||
-
T
must meet the requirements of
MoveConstructible
in order to use overload (2).
|
Return value
Notes
There are some occasions where
class template argument deduction
of
std::array
cannot be used while
to_array
is available:
-
to_array
can be used when the element type of thestd::array
is manually specified and the length is deduced, which is preferable when implicit conversion is wanted. -
to_array
can copy a string literal, while class template argument deduction constructs astd::array
of a single pointer to its first character.
std::to_array<long>({3, 4}); // OK: implicit conversion // std::array<long>{3, 4}; // error: too few template arguments std::to_array("foo"); // creates std::array<char, 4>{'f', 'o', 'o', '\0'} std::array{"foo"}; // creates std::array<const char*, 1>{"foo"}
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_to_array
|
201907L | (C++20) |
std::to_array
|
Possible implementation
to_array (1) |
---|
namespace detail { template<class T, std::size_t N, std::size_t... I> constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&a)[N], std::index_sequence<I...>) { return {{a[I]...}}; } } template<class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N]) { return detail::to_array_impl(a, std::make_index_sequence<N>{}); } |
to_array (2) |
namespace detail { template<class T, std::size_t N, std::size_t... I> constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&&a)[N], std::index_sequence<I...>) { return {{std::move(a[I])...}}; } } template<class T, std::size_t N> constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&&a)[N]) { return detail::to_array_impl(std::move(a), std::make_index_sequence<N>{}); } |
Example
#include <array> #include <memory> #include <string_view> #include <type_traits> #include <utility> // creates a constexpr array of string_view's constexpr auto w1n = std::to_array<std::string_view>({ "Mary", "Patricia", "Linda", "Barbara", "Elizabeth", "Jennifer" }); static_assert(std::is_same_v<decltype(w1n), const std::array<std::string_view, 6>>); static_assert(w1n.size() == 6 and w1n[5] == "Jennifer"); int main() { // copies a string literal auto a1 = std::to_array("foo"); static_assert(a1.size() == 4); // deduces both element type and length auto a2 = std::to_array({0, 2, 1, 3}); static_assert(std::is_same_v<decltype(a2), std::array<int, 4>>); // deduces length with element type specified // implicit conversion happens auto a3 = std::to_array<long>({0, 1, 3}); static_assert(std::is_same_v<decltype(a3), std::array<long, 3>>); auto a4 = std::to_array<std::pair<int, float>>( {{3, 0.0f}, {4, 0.1f}, {4, 0.1e23f}}); static_assert(a4.size() == 3); // creates a non-copyable std::array auto a5 = std::to_array({std::make_unique<int>(3)}); static_assert(a5.size() == 1); // error: copying multidimensional arrays is not supported // char s[2][6] = {"nice", "thing"}; // auto a6 = std::to_array(s); }
See also
(library fundamentals TS v2)
|
creates a
std::array
object whose size and optionally element type are deduced from the arguments
(function template) |