cacosf, cacos, cacosl
Defined in header
<complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header
<tgmath.h>
|
||
#define acos( z )
|
(4) | (since C99) |
z
with branch cuts outside the interval
[−1,+1]
along the real axis.
z
has type
long
double
complex
,
cacosl
is called. if
z
has type
double
complex
,
cacos
is called, if
z
has type
float
complex
,
cacosf
is called. If
z
is real or integer, then the macro invokes the corresponding real function (
acosf
,
acos
,
acosl
). If
z
is imaginary, then the macro invokes the corresponding complex number version.
Parameters
z | - | complex argument |
Return value
If no errors occur, complex arc cosine of
z
is returned, in the range a strip unbounded along the imaginary axis and in the interval [0; π] along the real axis.
Error handling and special values
Errors are reported consistent with math_errhandling .
If the implementation supports IEEE floating-point arithmetic,
- cacos ( conj ( z ) ) == conj ( cacos ( z ) )
-
If
z
is±0+0i
, the result isπ/2-0i
-
If
z
is±0+NaNi
, the result isπ/2+NaNi
-
If
z
isx+∞i
(for any finite x), the result isπ/2-∞i
-
If
z
isx+NaNi
(for any nonzero finite x), the result isNaN+NaNi
and FE_INVALID may be raised. -
If
z
is-∞+yi
(for any positive finite y), the result isπ-∞i
-
If
z
is+∞+yi
(for any positive finite y), the result is+0-∞i
-
If
z
is-∞+∞i
, the result is3π/4-∞i
-
If
z
is+∞+∞i
, the result isπ/4-∞i
-
If
z
is±∞+NaNi
, the result isNaN±∞i
(the sign of the imaginary part is unspecified) -
If
z
isNaN+yi
(for any finite y), the result isNaN+NaNi
and FE_INVALID may be raised -
If
z
isNaN+∞i
, the result isNaN-∞i
-
If
z
isNaN+NaNi
, the result isNaN+NaNi
Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventially placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine is acos z =1 |
2 |
For any z, acos(z) = π - acos(-z)
Example
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = cacos(-2); printf("cacos(-2+0i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = cacos(conj(-2)); // or CMPLX(-2, -0.0) printf("cacos(-2-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // for any z, acos(z) = pi - acos(-z) double pi = acos(-1); double complex z3 = ccos(pi-z2); printf("ccos(pi - cacos(-2-0i) = %f%+fi\n", creal(z3), cimag(z3)); }
Output:
cacos(-2+0i) = 3.141593-1.316958i cacos(-2-0i) (the other side of the cut) = 3.141593+1.316958i ccos(pi - cacos(-2-0i) = 2.000000+0.000000i
References
- C11 standard (ISO/IEC 9899:2011):
-
- 7.3.5.1 The cacos functions (p: 190)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- G.6.1.1 The cacos functions (p: 539)
-
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
-
- 7.3.5.1 The cacos functions (p: 172)
-
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
-
- G.6.1.1 The cacos functions (p: 474)
-
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)
(C99)
(C99)
|
computes the complex arc sine
(function) |
(C99)
(C99)
(C99)
|
computes the complex arc tangent
(function) |
(C99)
(C99)
(C99)
|
computes the complex cosine
(function) |
(C99)
(C99)
|
computes arc cosine (
arccos(x)
)
(function) |
C++ documentation
for
acos
|