casinhf, casinh, casinhl
Defined in header
<complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header
<tgmath.h>
|
||
#define asinh( z )
|
(4) | (since C99) |
z
with branch cuts outside the interval
[−i; +i]
along the imaginary axis.
z
has type
long
double
complex
,
casinhl
is called. if
z
has type
double
complex
,
casinh
is called, if
z
has type
float
complex
,
casinhf
is called. If
z
is real or integer, then the macro invokes the corresponding real function (
asinhf
,
asinh
,
asinhl
). If
z
is imaginary, then the macro invokes the corresponding real version of the function
asin
, implementing the formula
asinh(iy) = i asin(y)
, and the return type is imaginary.
Parameters
z | - | complex argument |
Return value
If no errors occur, the complex arc hyperbolic sine of
z
is returned, in the range of a strip mathematically unbounded along the real axis and in the interval
[−iπ/2; +iπ/2]
along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- casinh ( conj ( z ) ) == conj ( casinh ( z ) )
- casinh ( - z ) == - casinh ( z )
-
If
z
is+0+0i
, the result is+0+0i
-
If
z
isx+∞i
(for any positive finite x), the result is+∞+π/2
-
If
z
isx+NaNi
(for any finite x), the result isNaN+NaNi
and FE_INVALID may be raised -
If
z
is+∞+yi
(for any positive finite y), the result is+∞+0i
-
If
z
is+∞+∞i
, the result is+∞+iπ/4
-
If
z
is+∞+NaNi
, the result is+∞+NaNi
-
If
z
isNaN+0i
, the result isNaN+0i
-
If
z
isNaN+yi
(for any finite nonzero y), the result isNaN+NaNi
and FE_INVALID may be raised -
If
z
isNaN+∞i
, the result is±∞+NaNi
(the sign of the real part is unspecified) -
If
z
isNaN+NaNi
, the result isNaN+NaNi
Notes
Although the C standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".
Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (- i ∞,- i ) and ( i , i ∞) of the imaginary axis.
The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + √ 1+z 2 )
For any z, asinh(z) =asin(iz) |
i |
Example
#include <stdio.h> #include <complex.h> int main(void) { double complex z = casinh(0+2*I); printf("casinh(+0+2i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = casinh(-conj(2*I)); // or casinh(CMPLX(-0.0, 2)) in C11 printf("casinh(-0+2i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // for any z, asinh(z) = asin(iz)/i double complex z3 = casinh(1+2*I); printf("casinh(1+2i) = %f%+fi\n", creal(z3), cimag(z3)); double complex z4 = casin((1+2*I)*I)/I; printf("casin(i * (1+2i))/i = %f%+fi\n", creal(z4), cimag(z4)); }
Output:
casinh(+0+2i) = 1.316958+1.570796i casinh(-0+2i) (the other side of the cut) = -1.316958+1.570796i casinh(1+2i) = 1.469352+1.063440i casin(i * (1+2i))/i = 1.469352+1.063440i
References
- C11 standard (ISO/IEC 9899:2011):
-
- 7.3.6.2 The casinh functions (p: 192-193)
-
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
-
- G.6.2.2 The casinh functions (p: 540)
-
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
-
- 7.3.6.2 The casinh functions (p: 174-175)
-
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
-
- G.6.2.2 The casinh functions (p: 475)
-
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)
(C99)
(C99)
|
computes the complex arc hyperbolic cosine
(function) |
(C99)
(C99)
(C99)
|
computes the complex arc hyperbolic tangent
(function) |
(C99)
(C99)
(C99)
|
computes the complex hyperbolic sine
(function) |
(C99)
(C99)
(C99)
|
computes inverse hyperbolic sine (
arsinh(x)
)
(function) |
C++ documentation
for
asinh
|