std:: asinh (std::complex)

From cppreference.com
Defined in header <complex>
template < class T >
complex < T > asinh ( const complex < T > & z ) ;
(since C++11)

Computes complex arc hyperbolic sine of a complex value z with branch cuts outside the interval [−i; +i] along the imaginary axis.

Parameters

z - complex value

Return value

If no errors occur, the complex arc hyperbolic sine of z is returned, in the range of a strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.

Error handling and special values

Errors are reported consistent with math_errhandling .

If the implementation supports IEEE floating-point arithmetic,

  • std:: asinh ( std:: conj ( z ) ) == std:: conj ( std:: asinh ( z ) )
  • std:: asinh ( - z ) == - std:: asinh ( z )
  • If z is (+0,+0) , the result is (+0,+0)
  • If z is (x,+∞) (for any positive finite x), the result is (+∞,π/2)
  • If z is (x,NaN) (for any finite x), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (+∞,y) (for any positive finite y), the result is (+∞,+0)
  • If z is (+∞,+∞) , the result is (+∞,π/4)
  • If z is (+∞,NaN) , the result is (+∞,NaN)
  • If z is (NaN,+0) , the result is (NaN,+0)
  • If z is (NaN,y) (for any finite nonzero y), the result is (NaN,NaN) and FE_INVALID may be raised
  • If z is (NaN,+∞) , the result is (±∞,NaN) (the sign of the real part is unspecified)
  • If z is (NaN,NaN) , the result is (NaN,NaN)

Notes

Although the C++ standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".

Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (- i ∞,- i ) and ( i , i ∞) of the imaginary axis.

The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + 1+z 2 ) .

For any z , asinh(z) =
asin(iz)
i
.

Example

#include <complex>
#include <iostream>
 
int main()
{
    std::cout << std::fixed;
    std::complex<double> z1(0.0, -2.0);
    std::cout << "asinh" << z1 << " = " << std::asinh(z1) << '\n';
 
    std::complex<double> z2(-0.0, -2);
    std::cout << "asinh" << z2 << " (the other side of the cut) = "
              << std::asinh(z2) << '\n';
 
    // for any z, asinh(z) = asin(iz) / i
    std::complex<double> z3(1.0, 2.0);
    std::complex<double> i(0.0, 1.0);
    std::cout << "asinh" << z3 << " = " << std::asinh(z3) << '\n'
              << "asin" << z3 * i << " / i = " << std::asin(z3 * i) / i << '\n';
}

Output:

asinh(0.000000,-2.000000) = (1.316958,-1.570796)
asinh(-0.000000,-2.000000) (the other side of the cut) = (-1.316958,-1.570796)
asinh(1.000000,2.000000) = (1.469352,1.063440)
asin(-2.000000,1.000000) / i = (1.469352,1.063440)

See also

computes area hyperbolic cosine of a complex number ( arcosh(z) )
(function template)
computes area hyperbolic tangent of a complex number ( artanh(z) )
(function template)
computes hyperbolic sine of a complex number ( sinh(z) )
(function template)
(C++11) (C++11) (C++11)
computes the inverse hyperbolic sine ( arsinh(x) )
(function)