std:: polar (std::complex)

From cppreference.com
Defined in header <complex>
template < class T >
std:: complex < T > polar ( const T & r, const T & theta = T ( ) ) ;

Returns a complex number with magnitude r and phase angle theta .

The behavior is undefined if r is negative or NaN, or if theta is infinite.

Parameters

r - magnitude
theta - phase angle

Return value

A complex number determined by r and theta .

Notes

std :: polar ( r, theta ) is equivalent to any of the following expressions:

  • r * std:: exp ( theta * 1i )
  • r * ( cos ( theta ) + sin ( theta ) * 1i )
  • std:: complex ( r * cos ( theta ) , r * sin ( theta ) ) .

Using polar instead of exp can be about 4.5x faster in vectorized loops.

Example

#include <cmath>
#include <complex>
#include <iomanip>
#include <iostream>
#include <numbers>
using namespace std::complex_literals;
 
int main()
{
    constexpr auto π_2{std::numbers::pi / 2.0};
    constexpr auto mag{1.0};
 
    std::cout 
        << std::fixed << std::showpos << std::setprecision(1)
        << "   θ: │ polar:      │ exp:        │ complex:    │ trig:\n";
    for (int n{}; n != 4; ++n)
    {
        const auto θ{n * π_2};
        std::cout << std::setw(4) << 90 * n << "° │ "
                  << std::polar(mag, θ) << " │ "
                  << mag * std::exp(θ * 1.0i) << " │ "
                  << std::complex(mag * cos(θ), mag * sin(θ)) << " │ "
                  << mag * (cos(θ) + 1.0i * sin(θ)) << '\n';
    }
}

Output:

   θ: │ polar:      │ exp:        │ complex:    │ trig:
  +0° │ (+1.0,+0.0) │ (+1.0,+0.0) │ (+1.0,+0.0) │ (+1.0,+0.0)
 +90° │ (+0.0,+1.0) │ (+0.0,+1.0) │ (+0.0,+1.0) │ (+0.0,+1.0)
+180° │ (-1.0,+0.0) │ (-1.0,+0.0) │ (-1.0,+0.0) │ (-1.0,+0.0)
+270° │ (-0.0,-1.0) │ (-0.0,-1.0) │ (-0.0,-1.0) │ (-0.0,-1.0)

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 2459 C++98 behavior unclear for some inputs made undefined
LWG 2870 C++98 default value of parameter theta not dependent made dependent

See also

returns the magnitude of a complex number
(function template)
returns the phase angle
(function template)
complex base e exponential
(function template)