std:: acos (std::complex)
Defined in header
<complex>
|
||
template
<
class
T
>
complex < T > acos ( const complex < T > & z ) ; |
(since C++11) | |
Computes complex arc cosine of a complex value z . Branch cuts exist outside the interval [−1, +1] along the real axis.
Parameters
z | - | complex value |
Return value
If no errors occur, complex arc cosine of z is returned, in the range of a strip unbounded along the imaginary axis and in the interval [0, +π] along the real axis.
Error handling and special values
Errors are reported consistent with math_errhandling .
If the implementation supports IEEE floating-point arithmetic,
- std:: acos ( std:: conj ( z ) ) == std:: conj ( std:: acos ( z ) )
-
If
z
is
(±0,+0)
, the result is(π/2,-0)
-
If
z
is
(±0,NaN)
, the result is(π/2,NaN)
-
If
z
is
(x,+∞)
(for any finite x), the result is(π/2,-∞)
-
If
z
is
(x,NaN)
(for any nonzero finite x), the result is(NaN,NaN)
and FE_INVALID may be raised. -
If
z
is
(-∞,y)
(for any positive finite y), the result is(π,-∞)
-
If
z
is
(+∞,y)
(for any positive finite y), the result is(+0,-∞)
-
If
z
is
(-∞,+∞)
, the result is(3π/4,-∞)
-
If
z
is
(+∞,+∞)
, the result is(π/4,-∞)
-
If
z
is
(±∞,NaN)
, the result is(NaN,±∞)
(the sign of the imaginary part is unspecified) -
If
z
is
(NaN,y)
(for any finite y), the result is(NaN,NaN)
and FE_INVALID may be raised -
If
z
is
(NaN,+∞)
, the result is(NaN,-∞)
-
If
z
is
(NaN,NaN)
, the result is(NaN,NaN)
Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine is acos z =1 |
2 |
For any z , acos(z) = π - acos(-z) .
Example
#include <cmath> #include <complex> #include <iostream> int main() { std::cout << std::fixed; std::complex<double> z1(-2.0, 0.0); std::cout << "acos" << z1 << " = " << std::acos(z1) << '\n'; std::complex<double> z2(-2.0, -0.0); std::cout << "acos" << z2 << " (the other side of the cut) = " << std::acos(z2) << '\n'; // for any z, acos(z) = pi - acos(-z) const double pi = std::acos(-1); std::complex<double> z3 = pi - std::acos(z2); std::cout << "cos(pi - acos" << z2 << ") = " << std::cos(z3) << '\n'; }
Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958) acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958) cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
See also
(C++11)
|
computes arc sine of a complex number (
arcsin(z)
)
(function template) |
(C++11)
|
computes arc tangent of a complex number (
arctan(z)
)
(function template) |
computes cosine of a complex number (
cos(z)
)
(function template) |
|
(C++11)
(C++11)
|
computes arc cosine (
arccos(x)
)
(function) |
applies the function
std::acos
to each element of valarray
(function template) |
|
C documentation
for
cacos
|