std:: proj (std::complex)
Defined in header
<complex>
|
||
template
<
class
T
>
std:: complex < T > proj ( const std:: complex < T > & z ) ; |
(1) | (since C++11) |
Additional overloads
(since C++11)
|
||
Defined in header
<complex>
|
||
(A) | ||
std::
complex
<
float
>
proj
(
float
f
)
;
std::
complex
<
double
>
proj
(
double
f
)
;
|
(until C++23) | |
template
<
class
FloatingPoint
>
std:: complex < FloatingPoint > proj ( FloatingPoint f ) ; |
(since C++23) | |
template
<
class
Integer
>
std:: complex < double > proj ( Integer i ) ; |
(B) | |
Parameters
z | - | complex value |
f | - | floating-point value |
i | - | integer value |
Return value
Notes
The proj function helps model the Riemann sphere by mapping all infinities to one (give or take the sign of the imaginary zero), and should be used just before any operation, especially comparisons, that might give spurious results for any of the other infinities.
The additional overloads are not required to be provided exactly as (A,B) . They only need to be sufficient to ensure that for their argument num :
-
If
num
has a
standard
(until C++23)
floating-point type
T
, then std :: proj ( num ) has the same effect as std :: proj ( std:: complex < T > ( num ) ) . - Otherwise, if num has an integer type, then std :: proj ( num ) has the same effect as std :: proj ( std:: complex < double > ( num ) ) .
Example
#include <complex> #include <iostream> int main() { std::complex<double> c1(1, 2); std::cout << "proj" << c1 << " = " << std::proj(c1) << '\n'; std::complex<double> c2(INFINITY, -1); std::cout << "proj" << c2 << " = " << std::proj(c2) << '\n'; std::complex<double> c3(0, -INFINITY); std::cout << "proj" << c3 << " = " << std::proj(c3) << '\n'; }
Output:
proj(1,2) = (1,2) proj(inf,-1) = (inf,-0) proj(0,-inf) = (inf,-0)
See also
returns the magnitude of a complex number
(function template) |
|
returns the squared magnitude
(function template) |
|
constructs a complex number from magnitude and phase angle
(function template) |
|
C documentation
for
cproj
|