std:: acosh (std::complex)
Defined in header
<complex>
|
||
template
<
class
T
>
complex < T > acosh ( const complex < T > & z ) ; |
(since C++11) | |
Computes complex arc hyperbolic cosine of a complex value z with branch cut at values less than 1 along the real axis.
Parameters
z | - | complex value |
Return value
If no errors occur, the complex arc hyperbolic cosine of z is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling .
If the implementation supports IEEE floating-point arithmetic,
- std:: acosh ( std:: conj ( z ) ) == std:: conj ( std:: acosh ( z ) ) .
-
If
z
is
(±0,+0)
, the result is(+0,π/2)
. -
If
z
is
(x,+∞)
(for any finite x), the result is(+∞,π/2)
. -
If
z
is
(x,NaN)
(for any [1] finite x), the result is(NaN,NaN)
and FE_INVALID may be raised. -
If
z
is
(-∞,y)
(for any positive finite y), the result is(+∞,π)
. -
If
z
is
(+∞,y)
(for any positive finite y), the result is(+∞,+0)
. -
If
z
is
(-∞,+∞)
, the result is(+∞,3π/4)
. -
If
z
is
(±∞,NaN)
, the result is(+∞,NaN)
. -
If
z
is
(NaN,y)
(for any finite y), the result is(NaN,NaN)
and FE_INVALID may be raised. -
If
z
is
(NaN,+∞)
, the result is(+∞,NaN)
. -
If
z
is
(NaN,NaN)
, the result is(NaN,NaN)
.
-
↑
per
C11 DR471
, this holds for non-zero x only. If
z
is
(0,NaN)
, the result should be(NaN,π/2)
.
Notes
Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √ z+1 √ z-1 ) .
For any z , acosh(z) =√ z-1 |
√ 1-z |
Example
#include <complex> #include <iostream> int main() { std::cout << std::fixed; std::complex<double> z1(0.5, 0); std::cout << "acosh" << z1 << " = " << std::acosh(z1) << '\n'; std::complex<double> z2(0.5, -0.0); std::cout << "acosh" << z2 << " (the other side of the cut) = " << std::acosh(z2) << '\n'; // in upper half-plane, acosh = i acos std::complex<double> z3(1, 1), i(0, 1); std::cout << "acosh" << z3 << " = " << std::acosh(z3) << '\n' << "i*acos" << z3 << " = " << i*std::acos(z3) << '\n'; }
Output:
acosh(0.500000,0.000000) = (0.000000,-1.047198) acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198) acosh(1.000000,1.000000) = (1.061275,0.904557) i*acos(1.000000,1.000000) = (1.061275,0.904557)
See also
(C++11)
|
computes arc cosine of a complex number (
arccos(z)
)
(function template) |
(C++11)
|
computes area hyperbolic sine of a complex number (
arsinh(z)
)
(function template) |
(C++11)
|
computes area hyperbolic tangent of a complex number (
artanh(z)
)
(function template) |
computes hyperbolic cosine of a complex number (
cosh(z)
)
(function template) |
|
(C++11)
(C++11)
(C++11)
|
computes the inverse hyperbolic cosine (
arcosh(x)
)
(function) |
C documentation
for
cacosh
|