std:: exp, std:: expf, std:: expl
Defined in header
<cmath>
|
||
(1) | ||
float
exp
(
float
num
)
;
double
exp
(
double
num
)
;
|
(until C++23) | |
/* floating-point-type */
exp ( /* floating-point-type */ num ) ; |
(since C++23)
(constexpr since C++26) |
|
float
expf
(
float
num
)
;
|
(2) |
(since C++11)
(constexpr since C++26) |
long
double
expl
(
long
double
num
)
;
|
(3) |
(since C++11)
(constexpr since C++26) |
Additional overloads
(since C++11)
|
||
Defined in header
<cmath>
|
||
template
<
class
Integer
>
double exp ( Integer num ) ; |
(A) | (constexpr since C++26) |
std::exp
for all cv-unqualified floating-point types as the type of the parameter.
(since C++23)
A)
Additional overloads are provided for all integer types, which are treated as
double
.
|
(since C++11) |
Parameters
num | - | floating-point or integer value |
Return value
If no errors occur, the base- e exponential of num ( e num ) is returned.
If a range error occurs due to overflow,
+HUGE_VAL
,
+HUGE_VALF
, or
+HUGE_VALL
is returned.
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling .
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, 1 is returned.
- If the argument is -∞, +0 is returned.
- If the argument is +∞, +∞ is returned.
- If the argument is NaN, NaN is returned.
Notes
For IEEE-compatible type double , overflow is guaranteed if 709.8 < num , and underflow is guaranteed if num < -708.4 .
The additional overloads are not required to be provided exactly as (A) . They only need to be sufficient to ensure that for their argument num of integer type, std :: exp ( num ) has the same effect as std :: exp ( static_cast < double > ( num ) ) .
Example
#include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iomanip> #include <iostream> #include <numbers> // #pragma STDC FENV_ACCESS ON consteval double approx_e() { long double e{1.0}; for (auto fac{1ull}, n{1llu}; n != 18; ++n, fac *= n) e += 1.0 / fac; return e; } int main() { std::cout << std::setprecision(16) << "exp(1) = e¹ = " << std::exp(1) << '\n' << "numbers::e = " << std::numbers::e << '\n' << "approx_e = " << approx_e() << '\n' << "FV of $100, continuously compounded at 3% for 1 year = " << std::setprecision(6) << 100 * std::exp(0.03) << '\n'; // special values std::cout << "exp(-0) = " << std::exp(-0.0) << '\n' << "exp(-Inf) = " << std::exp(-INFINITY) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "exp(710) = " << std::exp(710) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
exp(1) = e¹ = 2.718281828459045 numbers::e = 2.718281828459045 approx_e = 2.718281828459045 FV of $100, continuously compounded at 3% for 1 year = 103.045 exp(-0) = 1 exp(-Inf) = 0 exp(710) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised
See also
(C++11)
(C++11)
(C++11)
|
returns
2
raised to the given power (
2
x
)
(function) |
(C++11)
(C++11)
(C++11)
|
returns
e
raised to the given power, minus one (
e
x
-1
)
(function) |
(C++11)
(C++11)
|
computes natural (base
e
) logarithm (
ln(x)
)
(function) |
complex base
e
exponential
(function template) |
|
applies the function
std::exp
to each element of valarray
(function template) |
|
C documentation
for
exp
|