acosh, acoshf, acoshl

From cppreference.com
< c ‎ | numeric ‎ | math
Common mathematical functions
Types
Functions
Basic operations
(C99)
(C99)
(C99)
(C99) (C99) (C99) (C23)
Maximum/minimum operations
Exponential functions
Power functions
Trigonometric and hyperbolic functions
Error and gamma functions
(C99)
(C99)
(C99)
(C99)
Nearest integer floating-point operations
(C99) (C99) (C99)
(C23) (C23) (C23) (C23)
Floating-point manipulation functions
Narrowing operations
(C23)
(C23)
(C23)
(C23)
(C23)
(C23)
Quantum and quantum exponent functions
Decimal re-encoding functions
Total order and payload functions
Classification
Macro constants
Special floating-point values
Arguments and return values
Error handling
Defined in header <math.h>
float acoshf ( float arg ) ;
(1) (since C99)
double acosh ( double arg ) ;
(2) (since C99)
long double acoshl ( long double arg ) ;
(3) (since C99)
Defined in header <tgmath.h>
#define acosh( arg )
(4) (since C99)
1-3) Computes the inverse hyperbolic cosine of arg .
4) Type-generic macro: If the argument has type long double , acoshl is called. Otherwise, if the argument has integer type or the type double , acosh is called. Otherwise, acoshf is called. If the argument is complex, then the macro invokes the corresponding complex function ( cacoshf , cacosh , cacoshl ).

Parameters

arg - floating-point value representing the area of a hyperbolic sector

Return value

If no errors occur, the inverse hyperbolic cosine of arg ( cosh -1 (arg) , or arcosh(arg) ) on the interval [0, +∞] , is returned.

If a domain error occurs, an implementation-defined value is returned (NaN where supported).

Error handling

Errors are reported as specified in math_errhandling .

If the argument is less than 1 , a domain error occurs.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is less than 1, FE_INVALID is raised an NaN is returned.
  • If the argument is 1, +0 is returned.
  • If the argument is +∞, +∞ is returned.
  • If the argument is NaN, NaN is returned.

Notes

Although the C standard names this function "arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "inverse hyperbolic cosine" (used by POSIX) or "area hyperbolic cosine".

Example

#include <errno.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
// #pragma STDC FENV_ACCESS ON
 
int main(void)
{
    printf("acosh(1) = %f\nacosh(10) = %f\n", acosh(1), acosh(10));
    printf("acosh(DBL_MAX) = %f\nacosh(Inf) = %f\n", acosh(DBL_MAX), acosh(INFINITY));
 
    // error handling
    errno = 0; feclearexcept(FE_ALL_EXCEPT);
    printf("acosh(0.5) = %f\n", acosh(0.5));
    if (errno == EDOM)
        perror("    errno == EDOM");
    if (fetestexcept(FE_INVALID))
        puts("    FE_INVALID raised");
}

Possible output:

acosh(1) = 0.000000
acosh(10) = 2.993223
acosh(DBL_MAX) = 710.475860
acosh(Inf) = inf
acosh(0.5) = -nan
    errno == EDOM: Numerical argument out of domain
    FE_INVALID raised

References

  • C23 standard (ISO/IEC 9899:2024):
  • 7.12.5.1 The acosh functions (p: TBD)
  • 7.27 Type-generic math <tgmath.h> (p: TBD)
  • F.10.2.1 The acosh functions (p: TBD)
  • C17 standard (ISO/IEC 9899:2018):
  • 7.12.5.1 The acosh functions (p: 175)
  • 7.25 Type-generic math <tgmath.h> (p: 272-273)
  • F.10.2.1 The acosh functions (p: 379)
  • C11 standard (ISO/IEC 9899:2011):
  • 7.12.5.1 The acosh functions (p: 240)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.2.1 The acosh functions (p: 520)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.12.5.1 The acosh functions (p: 221)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.2.1 The acosh functions (p: 457)

See also

(C99) (C99) (C99)
computes inverse hyperbolic sine ( arsinh(x) )
(function)
(C99) (C99) (C99)
computes inverse hyperbolic tangent ( artanh(x) )
(function)
(C99) (C99)
computes hyperbolic cosine ( cosh(x) )
(function)
(C99) (C99) (C99)
computes the complex arc hyperbolic cosine
(function)

External links

Weisstein, Eric W. "Inverse Hyperbolic Cosine." From MathWorld — A Wolfram Web Resource.