erf, erff, erfl

From cppreference.com
< c ‎ | numeric ‎ | math
Common mathematical functions
Types
Functions
Basic operations
(C99)
(C99)
(C99)
(C99) (C99) (C99) (C23)
Maximum/minimum operations
Exponential functions
Power functions
Trigonometric and hyperbolic functions
Error and gamma functions
erf
(C99)
(C99)
(C99)
(C99)
Nearest integer floating-point operations
(C99) (C99) (C99)
(C23) (C23) (C23) (C23)
Floating-point manipulation functions
Narrowing operations
(C23)
(C23)
(C23)
(C23)
(C23)
(C23)
Quantum and quantum exponent functions
Decimal re-encoding functions
Total order and payload functions
Classification
Macro constants
Special floating-point values
Arguments and return values
Error handling
Defined in header <math.h>
float erff ( float arg ) ;
(1) (since C99)
double erf ( double arg ) ;
(2) (since C99)
long double erfl ( long double arg ) ;
(3) (since C99)
Defined in header <tgmath.h>
#define erf( arg )
(4) (since C99)
1-3) Computes the error function of arg .
4) Type-generic macro: If arg has type long double , erfl is called. Otherwise, if arg has integer type or the type double , erf is called. Otherwise, erff is called.

Parameters

arg - floating-point value

Return value

If no errors occur, value of the error function of arg , that is
2
π
arg0 e -t 2 d t
, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is
2*arg
π
, is returned.

Error handling

Errors are reported as specified in math_errhandling .

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is ±0, ±0 is returned
  • If the argument is ±∞, ±1 is returned
  • If the argument is NaN, NaN is returned

Notes

Underflow is guaranteed if | arg | < DBL_MIN * ( sqrt ( π ) / 2 ) .

erf(
x
σ 2
)
is the probability that a measurement whose errors are subject to a normal distribution with standard deviation σ is less than x away from the mean value.

Example

#include <math.h>
#include <stdio.h>
 
double phi(double x1, double x2)
{
    return (erf(x2 / sqrt(2)) - erf(x1 / sqrt(2))) / 2;
}
 
int main(void)
{
    puts("normal variate probabilities:");
    for (int n = -4; n < 4; ++n)
        printf("[%2d:%2d]: %5.2f%%\n", n, n + 1, 100 * phi(n, n + 1));
 
    puts("special values:");
    printf("erf(-0) = %f\n", erf(-0.0));
    printf("erf(Inf) = %f\n", erf(INFINITY));
}

Output:

normal variate probabilities:
[-4:-3]:  0.13%
[-3:-2]:  2.14%
[-2:-1]: 13.59%
[-1: 0]: 34.13%
[ 0: 1]: 34.13%
[ 1: 2]: 13.59%
[ 2: 3]:  2.14%
[ 3: 4]:  0.13%
special values:
erf(-0) = -0.000000
erf(Inf) = 1.000000

References

  • C11 standard (ISO/IEC 9899:2011):
  • 7.12.8.1 The erf functions (p: 249)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.5.1 The erf functions (p: 525)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.12.8.1 The erf functions (p: 230)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.5.1 The erf functions (p: 462)

See also

(C99) (C99) (C99)
computes complementary error function
(function)

External links

Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource.