std:: apply

From cppreference.com
Utilities library
General utilities
Relational operators (deprecated in C++20)
Defined in header <tuple>
template < class F, class Tuple >
constexpr decltype ( auto ) apply ( F && f, Tuple && t ) ;
(since C++17)
(until C++23)
template < class F, tuple - like Tuple >
constexpr decltype ( auto ) apply ( F && f, Tuple && t ) noexcept ( /* see below */ ) ;
(since C++23)

Invoke the Callable object f with the elements of t as arguments.

Given the exposition-only function apply-impl defined as follows:

template < class F, class Tuple, std:: size_t ... I >
constexpr decltype ( auto )
apply-impl ( F && f, Tuple && t, std:: index_sequence < I... > ) // exposition only
{
return INVOKE ( std:: forward < F > ( f ) , std :: get < I > ( std:: forward < Tuple > ( t ) ) ... ) ;
}

The effect is equivalent to:

return apply-impl ( std:: forward < F > ( f ) , std:: forward < Tuple > ( t ) ,
std:: make_index_sequence <
std:: tuple_size_v < std:: decay_t < Tuple >>> { } ) ;
.

Parameters

f - Callable object to be invoked
t - tuple whose elements to be used as arguments to f

Return value

The value returned by f .

Exceptions

(none)

(until C++23)
noexcept specification:
noexcept (

noexcept ( std:: invoke ( std:: forward < F > ( f ) ,
std :: get < Is > ( std:: forward < Tuple > ( t ) ) ... ) )

)

where Is... denotes the parameter pack:

(since C++23)

Notes

Tuple need not be std::tuple , and instead may be anything that supports std::get and std::tuple_size ; in particular, std::array and std::pair may be used.

(until C++23)

Tuple is constrained to be tuple-like, i.e. each type therein is required to be a specialization of std::tuple or another type (such as std::array and std::pair ) that models tuple-like .

(since C++23)
Feature-test macro Value Std Feature
__cpp_lib_apply 201603L (C++17) std::apply

Example

#include <iostream>
#include <tuple>
#include <utility>
 
int add(int first, int second) { return first + second; }
 
template<typename T>
T add_generic(T first, T second) { return first + second; }
 
auto add_lambda = [](auto first, auto second) { return first + second; };
 
template<typename... Ts>
std::ostream& operator<<(std::ostream& os, std::tuple<Ts...> const& theTuple)
{
    std::apply
    (
        [&os](Ts const&... tupleArgs)
        {
            os << '[';
            std::size_t n{0};
            ((os << tupleArgs << (++n != sizeof...(Ts) ? ", " : "")), ...);
            os << ']';
        }, theTuple
    );
    return os;
}
 
int main()
{
    // OK
    std::cout << std::apply(add, std::pair(1, 2)) << '\n';
 
    // Error: can't deduce the function type
    // std::cout << std::apply(add_generic, std::make_pair(2.0f, 3.0f)) << '\n'; 
 
    // OK
    std::cout << std::apply(add_lambda, std::pair(2.0f, 3.0f)) << '\n'; 
 
    // advanced example
    std::tuple myTuple{25, "Hello", 9.31f, 'c'};
    std::cout << myTuple << '\n';
}

Output:

3
5
[25, Hello, 9.31, c]

See also

(C++11)
creates a tuple object of the type defined by the argument types
(function template)
creates a tuple of forwarding references
(function template)
construct an object with a tuple of arguments
(function template)
(C++17) (C++23)
invokes any Callable object with given arguments and possibility to specify return type (since C++23)
(function template)