std:: forward_like
Defined in header
<utility>
|
||
template
<
class
T,
class
U
>
constexpr auto && forward_like ( U && x ) noexcept ; |
(since C++23) | |
Returns a reference to
x
which has similar properties to
T&&
.
The return type is determined as below:
- If std:: remove_reference_t < T > is a const-qualified type, then the referenced type of the return type is const std:: remove_reference_t < U > . Otherwise, the referenced type is std:: remove_reference_t < U > .
-
If
T&&
is an lvalue reference type, then the return type is also an lvalue reference type. Otherwise, the return type is an rvalue reference type.
If
T
is not a
referenceable type
, the program is ill-formed.
Parameters
x | - |
a value needs to be forwarded like type
T
|
Return value
A reference to x of the type determined as above.
Notes
Like
std::forward
,
std::move
, and
std::as_const
,
std::forward_like
is a type cast that only influences the
value category
of an expression, or potentially adds const-qualification.
When
m
is an actual member and thus
o.
m
a valid expression, this is usually spelled as
std::
forward
<
decltype
(
o
)
>
(
o
)
.
m
in C++20 code.
This leads to three possible models, called merge , tuple , and language .
-
merge
: merge the
const
qualifiers, and adopt the value category of the
Owner
. -
tuple
: what
std
::
get
<
0
>
(
Owner
)
does, assuming
Owner
is a std:: tuple < Member > . - language : what std:: forward < decltype ( Owner ) > ( o ) . m does.
The main scenario that
std::forward_like
caters to is adapting “far” objects. Neither the
tuple
nor the
language
scenarios do the right thing for that main use-case, so the
merge
model is used for
std::forward_like
.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_forward_like
|
202207L | (C++23) |
std::forward_like
|
Possible implementation
template<class T, class U> constexpr auto&& forward_like(U&& x) noexcept { constexpr bool is_adding_const = std::is_const_v<std::remove_reference_t<T>>; if constexpr (std::is_lvalue_reference_v<T&&>) { if constexpr (is_adding_const) return std::as_const(x); else return static_cast<U&>(x); } else { if constexpr (is_adding_const) return std::move(std::as_const(x)); else return std::move(x); } } |
Example
#include <cstddef> #include <iostream> #include <memory> #include <optional> #include <type_traits> #include <utility> #include <vector> struct TypeTeller { void operator()(this auto&& self) { using SelfType = decltype(self); using UnrefSelfType = std::remove_reference_t<SelfType>; if constexpr (std::is_lvalue_reference_v<SelfType>) { if constexpr (std::is_const_v<UnrefSelfType>) std::cout << "const lvalue\n"; else std::cout << "mutable lvalue\n"; } else { if constexpr (std::is_const_v<UnrefSelfType>) std::cout << "const rvalue\n"; else std::cout << "mutable rvalue\n"; } } }; struct FarStates { std::unique_ptr<TypeTeller> ptr; std::optional<TypeTeller> opt; std::vector<TypeTeller> container; auto&& from_opt(this auto&& self) { return std::forward_like<decltype(self)>(self.opt.value()); // It is OK to use std::forward<decltype(self)>(self).opt.value(), // because std::optional provides suitable accessors. } auto&& operator[](this auto&& self, std::size_t i) { return std::forward_like<decltype(self)>(self.container.at(i)); // It is not so good to use std::forward<decltype(self)>(self)[i], because // containers do not provide rvalue subscript access, although they could. } auto&& from_ptr(this auto&& self) { if (!self.ptr) throw std::bad_optional_access{}; return std::forward_like<decltype(self)>(*self.ptr); // It is not good to use *std::forward<decltype(self)>(self).ptr, because // std::unique_ptr<TypeTeller> always dereferences to a non-const lvalue. } }; int main() { FarStates my_state { .ptr{std::make_unique<TypeTeller>()}, .opt{std::in_place, TypeTeller{}}, .container{std::vector<TypeTeller>(1)}, }; my_state.from_ptr()(); my_state.from_opt()(); my_state[0](); std::cout << '\n'; std::as_const(my_state).from_ptr()(); std::as_const(my_state).from_opt()(); std::as_const(my_state)[0](); std::cout << '\n'; std::move(my_state).from_ptr()(); std::move(my_state).from_opt()(); std::move(my_state)[0](); std::cout << '\n'; std::move(std::as_const(my_state)).from_ptr()(); std::move(std::as_const(my_state)).from_opt()(); std::move(std::as_const(my_state))[0](); std::cout << '\n'; }
Output:
mutable lvalue mutable lvalue mutable lvalue const lvalue const lvalue const lvalue mutable rvalue mutable rvalue mutable rvalue const rvalue const rvalue const rvalue
See also
(C++11)
|
converts the argument to an xvalue
(function template) |
(C++11)
|
forwards a function argument and use the type template argument to preserve its value category
(function template) |
(C++17)
|
obtains a reference to
const
to its argument
(function template) |